贝叶斯优化一维信号快速非局部均值去噪的Python代码
时间: 2023-12-28 08:05:45 浏览: 141
以下是一个使用贝叶斯优化的一维信号快速非局部均值去噪的Python代码示例:
```python
import numpy as np
from scipy import signal
from bayes_opt import BayesianOptimization
def non_local_mean(img, h, search_window, patch_size):
"""快速非局部均值去噪"""
pad_size = search_window // 2
img_pad = np.pad(img, pad_size, mode='symmetric')
# 计算距离权重矩阵
weight = np.zeros_like(img_pad)
for i in range(pad_size, img_pad.shape[0]-pad_size):
for j in range(pad_size, img_pad.shape[1]-pad_size):
patch = img_pad[i-pad_size:i+pad_size+1, j-pad_size:j+pad_size+1]
diff = patch - img_pad[i, j]
dist = np.sum(diff**2)
weight[i, j] = np.exp(-dist/h)
# 计算均值
denoised_img = np.zeros_like(img)
for i in range(pad_size, img_pad.shape[0]-pad_size):
for j in range(pad_size, img_pad.shape[1]-pad_size):
search_patch = img_pad[i-pad_size:i+pad_size+1, j-pad_size:j+pad_size+1]
search_weight = weight[i-pad_size:i+pad_size+1, j-pad_size:j+pad_size+1]
search_weight /= np.sum(search_weight)
dist = (search_patch - img_pad[i, j])**2
numerator = np.sum(search_weight * np.exp(-dist/h) * search_patch)
denoised_img[i-pad_size, j-pad_size] = numerator
return denoised_img
def score_function(h):
"""贝叶斯优化的评分函数"""
denoised_img = non_local_mean(img, h, search_window, patch_size)
score = -np.mean((denoised_img - img)**2) # 最小化MSE
return score
# 生成测试数据
img = np.random.rand(100)
search_window = 5
patch_size = 3
# 设置优化参数范围
pbounds = {'h': (0.01, 1)}
# 运行贝叶斯优化
optimizer = BayesianOptimization(f=score_function, pbounds=pbounds)
optimizer.maximize(init_points=5, n_iter=20)
# 输出最佳结果
print(optimizer.max)
```
在代码中,首先定义了一个快速非局部均值去噪的函数`non_local_mean`,它接受一个一维信号`img`,以及三个参数`h`、`search_window`、`patch_size`,其中`h`是高斯核的标准差,`search_window`是搜索窗口的大小,`patch_size`是块的大小。函数的实现过程与二维图像的非局部均值去噪类似,只是在计算距离权重时需要计算每个像素点与周围像素块的距离。
然后,定义了一个评分函数`score_function`,它接受一个参数`h`,调用`non_local_mean`函数计算去噪后的图像,并计算均方误差(MSE)作为评分。最后,使用贝叶斯优化器`BayesianOptimization`,传入评分函数和参数范围,运行优化过程,并输出最佳结果。
阅读全文