apollo cyber rt
时间: 2023-09-07 17:03:35 浏览: 170
Apollo Cyber RT是基于Apollo自动驾驶开放平台的一种实时仿真工具。它能够对自动驾驶算法进行快速的模拟测试和验证。
Apollo Cyber RT可以在没有物理车辆的情况下,使用虚拟仿真环境对自动驾驶系统进行全面的测试。它提供了高度逼真的虚拟场景,包括各种路况、天气条件、道路标志和交通规则。用户可以在这个仿真环境中,验证自动驾驶算法在各种复杂情况下的性能和稳定性。
Apollo Cyber RT还提供了丰富的仿真工具和API接口,可以进行车辆动力学仿真、传感器数据仿真、车辆控制仿真等。用户可以根据实际需求,快速搭建自己的仿真场景,并通过API接口与自己的自动驾驶算法进行集成。这样,用户就可以在不同场景下进行大规模的仿真测试,测试自动驾驶系统对各种情况的应对能力。
与传统的实地测试相比,Apollo Cyber RT的优势在于它可以大大缩短测试周期和降低测试成本。传统的实地测试需要耗费大量的时间和资源,并且受到地理和气候等限制。而Apollo Cyber RT可以在任何时间和地点进行仿真测试,同时还可以通过调整仿真参数、重复测试等方式,快速地验证和迭代自动驾驶算法。
总之,Apollo Cyber RT是一种基于Apollo开放平台的实时仿真工具,它能够帮助用户快速测试和验证自动驾驶算法。它提供了丰富的虚拟场景和仿真工具,可以满足用户在不同场景下的测试需求,同时还能显著缩短测试周期和降低测试成本。
相关问题
ubuntu20.04安装Apollo Cyber RT
### 安装 Apollo Cyber RT 的准备
为了在 Ubuntu 20.04 上成功安装 Apollo Cyber RT,环境设置至关重要。确保已正确安装了 NVIDIA 驱动程序以及 CUDA 版本匹配[^1]。
对于 GPU 支持,特别是当计划使用涉及感知等模块的功能时,需要确认已经安装适合的 NVIDIA 显卡驱动程序版本。例如,针对 RTX3070 使用 CUDA11.3 进行适配[^4]。
### 更新系统包索引并安装 Git
更新本地软件包索引到最新状态,并通过 APT 包管理工具获取最新的软件列表:
```bash
sudo apt update && sudo apt upgrade -y
```
接着安装 `git` 工具用于克隆 Apollo 源代码仓库:
```bash
sudo apt install git -y
```
### 获取 Apollo 源码
进入用户的家目录并将官方 GitHub 项目复制下来:
```bash
cd ~/
git clone https://github.com/ApolloAuto/apollo.git
```
建议利用加速器如 IDM 或 XDM 来加快下载速度[^2]。
### Docker 环境搭建
Apollo 要求至少 Docker 19.03 版本以上才能正常工作。可以通过以下命令完成 Docker CE 的部署:
```bash
curl -fsSL https://get.docker.com | sh
sudo systemctl start docker && sudo systemctl enable docker
```
验证 Docker 是否可以正常使用:
```bash
sudo docker run hello-world
```
为了让当前用户无需每次输入密码就能操作 Docker 命令,执行下面的操作以加入 docker 用户组,并重新加载新的组成员身份:
```bash
sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker
```
### Nvidia Container Toolkit (可选)
如果有意让容器内的应用程序访问主机上的 GPU 设备,则还需要额外配置 Nvidia Container Toolkit:
```bash
distribution=$(. /etc/os-s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
```
这一步骤允许 Docker 容器识别和利用宿主机中的 NVIDIA GPU 资源。
### 编译 Apollo 源码前解决可能遇到的问题
某些情况下,在编译过程中可能会碰到缺少特定库文件的情况,比如找不到 glog 头文件错误提示 "No such file or directory #include 'glog/logging.h'" ,此时应先安装缺失的开发库:
```bash
sudo apt-get install libgoogle-glog-dev
```
上述措施有助于预防此类问题的发生[^5]。
cyberRT cmake
### CyberRT CMake Configuration and Usage
For configuring a project to use CyberRT, the setup within `CMakeLists.txt` involves specifying directories where CyberRT is installed or built from source. The inclusion of necessary libraries and headers ensures that applications can interact with CyberRT's functionalities effectively.
To integrate CyberRT into projects via CMake, one must ensure that environment variables such as `CYBER_PATH`, pointing to the installation directory of Apollo Cyber RT[^1], are correctly set up before invoking cmake commands. This allows CMake scripts access to required files through these paths.
A typical snippet for setting this up might look like:
```cmake
if(NOT DEFINED ENV{CYBER_PATH})
message(FATAL_ERROR "Environment variable CYBER_PATH not defined.")
endif()
set(CYBER_ROOT $ENV{CYBER_PATH})
include_directories(${CYBER_ROOT}/cyber/include)
link_directories(${CYBER_ROOT}/cyber/lib)
```
In addition to including header files and linking against libraries found under `${CYBER_ROOT}`, it may also be beneficial to utilize precompiled modules provided by CyberRT when available. These could simplify dependency management while speeding up compilation times significantly due to reduced recompilation needs whenever changes occur only outside those module boundaries.
The actual invocation process would involve running standard cmake command sequences after ensuring all dependencies have been properly declared inside your own package’s build system description file (`CMakeLists.txt`). For instance,
```bash
mkdir -p build && cd $_
cmake ..
make -j$(nproc)
```
This sequence creates an out-of-source build tree named 'build', configures the project using parent-directory located `CMakeLists.txt`, compiles everything in parallel according to CPU core count reported by nproc utility on Unix-like systems.
--related questions--
1. How does one verify successful integration between custom software components and CyberRT post-CMake configuration?
2. What specific features does CyberRT offer developers working within autonomous vehicle development environments?
3. Can you provide examples demonstrating how to leverage advanced capabilities offered by CyberRT during application design phases?
4. In what ways do environmental settings impact the performance optimization opportunities presented by integrating CyberRT?
阅读全文
相关推荐















