1x3和3x1卷积核代替3x3卷积核完整pytorch代码
时间: 2023-07-08 08:40:58 浏览: 349
VggNet网络Pytorch实战.pdf
以下是使用1x3和3x1卷积核代替3x3卷积核的PyTorch代码示例:
```python
import torch.nn as nn
# 定义一个用1x3卷积核代替3x3卷积核的卷积层
class Conv1x3(nn.Module):
def __init__(self, in_channels, out_channels):
super(Conv1x3, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(1, 3), stride=1, padding=(0, 1))
def forward(self, x):
x = self.conv(x)
return x
# 定义一个用3x1卷积核代替3x3卷积核的卷积层
class Conv3x1(nn.Module):
def __init__(self, in_channels, out_channels):
super(Conv3x1, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(3, 1), stride=1, padding=(1, 0))
def forward(self, x):
x = self.conv(x)
return x
# 定义一个包含1x3和3x1卷积层的卷积块
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv1 = Conv1x3(in_channels, out_channels)
self.conv2 = Conv3x1(out_channels, out_channels)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
```
在这个示例中,我们定义了两个卷积层,即Conv1x3和Conv3x1,分别用1x3和3x1卷积核代替3x3卷积核。然后我们定义了一个包含这两个卷积层的ConvBlock。在ConvBlock中,我们先使用Conv1x3卷积层进行卷积操作,然后再使用Conv3x1卷积层进行卷积操作。这样可以达到使用1x3和3x1卷积核代替3x3卷积核的效果。
阅读全文