求证下面的集合为凸集:\{x\in\mathbb R^n_+|x_1x_2\ge\alpha\}
时间: 2023-11-13 07:03:42 浏览: 82
根据已知顶点求构成凸包的顶点集合
我们可以通过证明该集合的定义域为凸集来证明该集合本身也是凸集。设$x,y\in\{x\in\mathbb R^n_+|x_1x_2\ge\alpha\}$,则有$x_1x_2\ge\alpha$和$y_1y_2\ge\alpha$。对于任意$\lambda\in[0,1]$,我们有
$$(\lambda x_1+(1-\lambda)y_1)(\lambda x_2+(1-\lambda)y_2)=\lambda^2x_1x_2+\lambda(1-\lambda)(x_1y_2+x_2y_1)+(1-\lambda)^2y_1y_2$$
由于$x_1x_2\ge\alpha$和$y_1y_2\ge\alpha$,所以$\lambda^2x_1x_2\ge\lambda^2\alpha$和$(1-\lambda)^2y_1y_2\ge(1-\lambda)^2\alpha$。又因为$x_1y_2+x_2y_1\ge2\sqrt{x_1x_2y_1y_2}\ge2\alpha$,所以$\lambda(1-\lambda)(x_1y_2+x_2y_1)\ge2\lambda(1-\lambda)\alpha$。因此,
$$(\lambda x_1+(1-\lambda)y_1)(\lambda x_2+(1-\lambda)y_2)\ge\lambda^2\alpha+2\lambda(1-\lambda)\alpha+(1-\lambda)^2\alpha=\alpha$$
即$\lambda x+(1-\lambda)y\in\{x\in\mathbb R^n_+|x_1x_2\ge\alpha\}$,因此该集合为凸集。
阅读全文