使用matlab实现离散卷积的计算(*表示卷积) (1)两个有限长序列:x(n)=u(n)-u(n-1); h(n)=(0.9 n)u(n) (2)编程并绘制x(n)、h(n)以及x(n)*h(n);
时间: 2024-11-09 17:20:29 浏览: 67
在MATLAB中,离散卷积可以通过`conv`函数来计算,它可以直接处理两个序列(在这里是\(x(n)\)和\(h(n)\))。首先,我们需要创建这两个序列,并按照指定的方式定义它们。下面是相应的步骤:
1. **定义序列**:
```matlab
% 定义x(n)
x = unitstep([0 1]); % u(n) - u(n-1),因为unitstep函数返回1 for n >= 0 and 0 otherwise
% 定义h(n)
h = (0.9).^((0:10)'); % (0.9^n) * u(n),注意这里是0到10的序列,因为h(n)通常考虑有限长度
% 检查序列长度,如果不同,可能需要调整其中一个序列
if length(x) ~= length(h)
warning('Sequences have different lengths, padding or truncating may be required.');
end
```
2. **计算卷积**:
```matlab
% 计算卷积结果
y = conv(x, h, 'full');
```
`'full'`选项会生成一个完整的卷积结果,包括所有延迟的影响。
3. **绘制序列**:
```matlab
% 绘制x(n)、h(n)和y(n)
subplot(2,1,1)
plot(x, 'LineWidth', 2, 'DisplayName', 'x(n)');
title('Discrete sequences');
subplot(2,1,2)
hold on;
plot(h, 'LineWidth', 2, 'DisplayName', 'h(n)');
plot(y, 'LineWidth', 2, 'DisplayName', 'x(n) * h(n)');
xlabel('n');
legend('Location', 'Best')
title('Convolution result');
hold off;
```
这将绘制出\(x(n)\),\(h(n)\)和卷积结果\(x(n) * h(n)\)的图形。
阅读全文
相关推荐


















