turn over是什么意思

时间: 2023-08-28 11:19:33 浏览: 91
turn over可以有多种意思,具体含义取决于上下文语境。以下是一些常见的意思: 1. 翻转、翻倒:例如,turn over a book(翻开一本书)。 2. 翻身、翻滚:例如,the car turned over(车翻了)。 3. 翻译、转化:例如,turn over a sentence to another language(将一句话翻译成另一种语言)。 4. 交接、移交:例如,turn over the responsibility to someone else(将责任移交给别人)。 5. 销售额、营业额:例如,the company's annual turnover is $10 million(该公司年营业额为1000万美元)。 在IT领域中,turn over通常不是一个常见的术语。
相关问题

char gameover; int player; gameover = getchar(); scanf("%d", &player); if ( gameover == 'N' ) if ( player == 1 ) printf("My turn"); else printf("Your turn"); else printf("GAME OVER"); 输入N2,输出  1 分 输入Y1,输出

输入N2时,程序输出"My turn"。 输入Y1时,程序输出"GAME OVER"。 程序如下所示: ```c char gameover; int player; gameover = getchar(); scanf("%d", &player); if (gameover == 'N') if (player == 1) printf("My turn"); else printf("Your turn"); else printf("GAME OVER"); ``` 程序首先读入一个字符gameover和一个整数player,然后根据gameover和player的值判断输出结果。如果gameover为'N',则根据player的值输出"My turn"或"Your turn";否则输出"GAME OVER"。 因此,输入N2时,程序输出"My turn";输入Y1时,程序输出"GAME OVER"。

char gameover; int player; gameover = getchar(); scanf("%d", &player); if ( gameover == 'N' ) if ( player == 1 ) printf("My turn"); else printf("GAME OVER"); 输入N1,输出  1 分 输入N2,输出

输入N1时,程序输出"My turn"。 输入N2时,程序输出"GAME OVER"。 程序如下所示: ```c char gameover; int player; gameover = getchar(); scanf("%d", &player); if (gameover == 'N') if (player == 1) printf("My turn"); else printf("GAME OVER"); ``` 程序首先读入一个字符gameover和一个整数player,然后根据gameover和player的值判断输出结果。如果gameover为'N',则根据player的值输出"My turn"或"GAME OVER"。 因此,输入N1时,程序输出"My turn";输入N2时,程序输出"GAME OVER"。

相关推荐

请扮演一个Python终端。我的命令是:import numpy as np def create_board(): board = np.zeros((15,15)) return board def place_piece(board, row, col, piece): board[row][col] = piece def is_valid_move(board, row, col): if row < 0 or row > 14 or col < 0 or col > 14: return False if board[row][col] != 0: return False return True def get_winner(board): # 检查行 for i in range(15): for j in range(11): if board[i][j] == board[i][j+1] == board[i][j+2] == board[i][j+3] == board[i][j+4] and board[i][j] != 0: return board[i][j] # 检查列 for i in range(11): for j in range(15): if board[i][j] == board[i+1][j] == board[i+2][j] == board[i+3][j] == board[i+4][j] and board[i][j] != 0: return board[i][j] # 检查对角线 for i in range(11): for j in range(11): if board[i][j] == board[i+1][j+1] == board[i+2][j+2] == board[i+3][j+3] == board[i+4][j+4] and board[i][j] != 0: return board[i][j] for i in range(11): for j in range(4, 15): if board[i][j] == board[i+1][j-1] == board[i+2][j-2] == board[i+3][j-3] == board[i+4][j-4] and board[i][j] != 0: return board[i][j] return 0 board = create_board() game_over = False turn = 1 while not game_over: if turn == 1: row = int(input("Player 1, enter row: ")) col = int(input("Player 1, enter col: ")) if is_valid_move(board, row, col): place_piece(board, row, col, 1) turn = 2 else: row = int(input("Player 2, enter row: ")) col = int(input("Player 2, enter col: ")) if is_valid_move(board, row, col): place_piece(board, row, col, 2) turn = 1 print(board) winner = get_winner(board) if winner != 0: print("Player " + str(winner) + " wins!") game_over = True

Given the grid below for the game of ACSL Patolli, utilize the following rules to play the game. All rules must be applied in the sequential order listed. 1 . There are 2 players. Each player has 3 markers. 2. The markers move according to the roll of a die (1 – 6). 3. Markers move in numerical order around the grid. 4. If, on a die roll, a marker lands on an occupied location, then that marker loses its turn and remains at its previous location. 5. A marker can jump over another marker on its way to finish its move. 6. A marker finishes its way around the grid when it lands on location 52. It is then removed from the board. A move can’t take a marker beyond location 52. If it does, the marker remains at its previous location. 7. If, on a die roll, a marker lands on an unoccupied location that is a prime number, the marker then moves six locations forward. However, it stops immediately before any occupied location. 8. If, on a die roll, a marker lands on an unoccupied location that is a perfect square greater than 4, the marker then moves 6 locations backwards. However, it stops immediately before any occupied location. 9. If, on a die roll, a marker lands on an unoccupied location that is neither a prime number nor a perfect square, then determine if the marker made at least one horizontal move followed by at least one vertical move (such as going from 6 to 8, 11 to 13, 26 to 28 … but not 2 to 4 or 30 to 32). In that case, the marker can only land on a location on its path that is a multiple of the die roll value even if it moves a smaller distance than the die roll value. However, if all the locations in its path that are multiples are occupied, then the marker does not move from its current location. The rules listed in #7 and #8 do not apply when using #9.

import pandas as pd import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.cluster import KMeans import os def dbscan(input_file): ## 纬度在前,经度在后 [latitude, longitude] columns = ['lat', 'lon'] in_df = pd.read_csv(input_file, sep=',', header=None, names=columns) # represent GPS points as (lat, lon) coords = in_df.as_matrix(columns=['lat', 'lon']) # earth's radius in km kms_per_radian = 6371.0086 # define epsilon as 0.5 kilometers, converted to radians for use by haversine # This uses the 'haversine' formula to calculate the great-circle distance between two points # that is, the shortest distance over the earth's surface # http://www.movable-type.co.uk/scripts/latlong.html epsilon = 0.5 / kms_per_radian # radians() Convert angles from degrees to radians db = DBSCAN(eps=epsilon, min_samples=15, algorithm='ball_tree', metric='haversine').fit(np.radians(coords)) cluster_labels = db.labels_ # get the number of clusters (ignore noisy samples which are given the label -1) num_clusters = len(set(cluster_labels) - set([-1])) print('Clustered ' + str(len(in_df)) + ' points to ' + str(num_clusters) + ' clusters') # turn the clusters in to a pandas series # clusters = pd.Series([coords[cluster_labels == n] for n in range(num_clusters)]) # print(clusters) kmeans = KMeans(n_clusters=1, n_init=1, max_iter=20, random_state=20) for n in range(num_clusters): # print('Cluster ', n, ' all samples:') one_cluster = coords[cluster_labels == n] # print(one_cluster[:1]) # clist = one_cluster.tolist() # print(clist[0]) kk = kmeans.fit(one_cluster) print(kk.cluster_centers_) def main(): path = './datas' filelist = os.listdir(path) for f in filelist: datafile = os.path.join(path, f) print(datafile) dbscan(datafile) if __name__ == '__main__': main()

翻译这段代码:print("start:") start = time.time() K = 9 skf = StratifiedKFold(n_splits=K,shuffle=True,random_state=2018) auc_cv = [] pred_cv = [] for k,(train_in,test_in) in enumerate(skf.split(X,y)): X_train,X_test,y_train,y_test = X[train_in],X[test_in],\ y[train_in],y[test_in] # The data structure 数据结构 lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # Set the parameters 设置参数 params = { 'boosting': 'gbdt', 'objective':'binary', 'verbosity': -1, 'learning_rate': 0.01, 'metric': 'auc', 'num_leaves':17 , 'min_data_in_leaf': 26, 'min_child_weight': 1.12, 'max_depth': 9, "feature_fraction": 0.91, "bagging_fraction": 0.82, "bagging_freq": 2, } print('................Start training..........................') # train gbm = lgb.train(params, lgb_train, num_boost_round=2000, valid_sets=lgb_eval, early_stopping_rounds=100, verbose_eval=100) print('................Start predict .........................') # Predict y_pred = gbm.predict(X_test,num_iteration=gbm.best_iteration) # Evaluate tmp_auc = roc_auc_score(y_test,y_pred) auc_cv.append(tmp_auc) print("valid auc:",tmp_auc) # Test pred = gbm.predict(X, num_iteration = gbm.best_iteration) pred_cv.append(pred) # the mean auc score of StratifiedKFold StratifiedKFold的平均auc分数 print('the cv information:') print(auc_cv) lgb_mean_auc = np.mean(auc_cv) print('cv mean score',lgb_mean_auc) end = time.time() lgb_practice_time=end-start print("......................run with time: {} s".format(lgb_practice_time) ) print("over:*") # turn into array 变为阵列 res = np.array(pred_cv) print("rusult:",res.shape) # mean the result 平均结果 r = res.mean(axis = 0) print('result shape:',r.shape) result = pd.DataFrame() result['company_id'] = range(1,df.shape[0]+1) result['pred_prob'] = r

Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully jumping from rock to rock in a river. The excitement takes place on a long, straight river with a rock at the start and another rock at the end, L units away from the start (1 ≤ L ≤ 1,000,000,000). Along the river between the starting and ending rocks, N (0 ≤ N ≤ 50,000) more rocks appear, each at an integral distance Di from the start (0 < Di < L). To play the game, each cow in turn starts at the starting rock and tries to reach the finish at the ending rock, jumping only from rock to rock. Of course, less agile cows never make it to the final rock, ending up instead in the river. Farmer John is proud of his cows and watches this event each year. But as time goes by, he tires of watching the timid cows of the other farmers limp across the short distances between rocks placed too closely together. He plans to remove several rocks in order to increase the shortest distance a cow will have to jump to reach the end. He knows he cannot remove the starting and ending rocks, but he calculates that he has enough resources to remove up to M rocks (0 ≤ M ≤ N). FJ wants to know exactly how much he can increase the shortest distance *before* he starts removing the rocks. Help Farmer John determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks. Input Line 1: Three space-separated integers: L, N, and M Lines 2..N+1: Each line contains a single integer indicating how far some rock is away from the starting rock. No two rocks share the same position. Output Line 1: A single integer that is the maximum of the shortest distance a cow has to jump after removing M rocks Sample Inputcopy Outputcopy 25 5 2 2 14 11 21 17 4 Hint Before removing any rocks, the shortest jump was a jump of 2 from 0 (the start) to 2. After removing the rocks at 2 and 14, the shortest required jump is a jump of 4 (from 17 to 21 or from 21 to 25).

最新推荐

recommend-type

Markdown学习笔记

Markdown学习笔记
recommend-type

热塑性弹性体,全球前21强生产商排名及市场份额.docx

热塑性弹性体,全球前21强生产商排名及市场份额
recommend-type

配合eclipse svn插件subclipse-4.3.4版本的javahl

配合eclipse svn插件subclipse-4.3.4版本的javahl,将其中的features和plugins目录解压到与subclipse-4.3.4插件同一目录下即可。在eclipse 4.31版本上验证有效。
recommend-type

一个基于epoll的多线程 linux c http web服务器.zip

一个基于epoll的多线程 linux c http web服务器.zip
recommend-type

Bash脚本教程:优雅地管理Java应用.zip

本Bash脚本用于自动化管理Java JAR应用的启动、停止及监控。首先检查JAR进程是否在运行,如在运行则安全终止。随后,使用预设的Java参数启动JAR文件,并将输出和错误日志重定向至日志文件。启动后,脚本持续监控JAR进程状态,确保其在预设时间内成功启动。本脚本提供了灵活的配置和错误处理机制,为Java应用的运维管理带来了便捷与可靠性。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。