分析这段代码,def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show()

时间: 2024-03-31 22:39:10 浏览: 15
这段代码主要是用来确定 KMeans 算法中的最佳聚类数量 K。具体来说,代码中的 sc_k 函数首先定义了一个 K 变量,它表示聚类数量的范围,从 2 到 9。然后,score 列表用来存储每个聚类数量对应的轮廓系数。对于每个 K 值,代码创建一个 KMeans 对象并拟合 iris 数据集。接着,计算轮廓系数并将其添加到 score 列表中。最后,绘制一个 K 值和轮廓系数之间的关系图,以便确定最佳的 K 值。其中,轮廓系数是一种衡量聚类效果的指标,它的取值范围是 [-1, 1],值越接近 1 越好,表示聚类效果越好。代码中使用的是欧几里得距离作为度量方式。
相关问题

import itertools from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans k_list = range(2,10,1) for k in itertools.product(k_list): km = KMeans(n_clusters=k) labels = km.fit(data).labels_报错

上述代码还是存在问题,应该修改为如下形式: ```python import itertools from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans k_list = range(2, 10, 1) for k in k_list: km = KMeans(n_clusters=k) labels = km.fit_predict(data) ``` 在进行KMeans聚类时,应该使用`fit_predict`方法来直接获取样本所属的簇标签,而不是使用`fit`方法再调用`labels_`属性来获取簇标签。

import itertools from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans k_list = range(2,10,1) for k in itertools.product(k_list): km = KMeans() labels = km.fit(data).labels_ 报错

这段代码中出现了一个问题,即在进行KMeans聚类时,没有指定聚类的数量k。 可以将代码修改为如下形式: ```python import itertools from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans k_list = range(2, 10, 1) for k in k_list: km = KMeans(n_clusters=k) labels = km.fit(data).labels_ ``` 这里我们在创建KMeans聚类器对象时,通过参数`n_clusters`指定聚类的数量k。

相关推荐

import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.datasets import load_iris from sklearn import preprocessing import matplotlib.pyplot as plt from pylab import mpl from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False np.random.seed(5) iris = load_iris() X = iris.data y = iris.target min_max_scaler = preprocessing.MinMaxScaler() X_minmax = min_max_scaler.fit_transform(X) batch_size = 15 num_cluster = 3 clf = MiniBatchKMeans(n_clusters=num_cluster, batch_size=batch_size, init='random') clf.fit(X_minmax) centers = clf.cluster_centers_ pre_clu = clf.labels_ vmarker = {0: '^', 1: 's', 2: 'D', } mValue = [vmarker[i] for i in pre_clu] for _marker, _x, _y in zip(mValue, X_minmax[:, 1], X_minmax[:, 2]): plt.scatter(_x, _y, marker=_marker,c='grey') plt.scatter(centers[:, 1], centers[:, 2], marker='*',s=200,c='black') plt.show() #手肘法则最佳k值 def sse_k(): K = range(1, 10) sse_result = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) sse_result.append(sum(np.min(cdist(iris.data, kmeans.cluster_centers_, 'euclidean'), axis=1)) / iris.data.shape[0]) plt.plot(K, sse_result, 'gx-') plt.xlabel('k') plt.ylabel(u'平均畸变程度') plt.title(u'肘部法则确定最佳的K值') plt.show() # 轮廓系统法最佳k值 def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show() sse_k() sc_k()

最新推荐

recommend-type

python 代码实现k-means聚类分析的思路(不使用现成聚类库)

主要介绍了python 代码实现k-means聚类分析(不使用现成聚类库),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

Python——K-means聚类分析及其结果可视化

K-Means是聚类算法的一种,通过距离来判断数据点间的相似度并据此对数据进行聚类。 1 聚类算法 科学计算中的聚类方法 方法名称 参数 可伸缩性 用例 几何形状(使用的指标) K-Means number of ...
recommend-type

人工智能实验K聚类算法实验报告.docx

编写程序,实现K聚类算法。 1.以(0,0), (10,0),(0,10)三个点为圆心,5为半径,随机生成30个点 2.以K=2,3,4分别对以上30个点进行聚类,观察结果
recommend-type

详解Java实现的k-means聚类算法

主要介绍了详解Java实现的k-means聚类算法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

python基于K-means聚类算法的图像分割

主要介绍了python基于K-means聚类算法的图像分割,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。