steger算法提取激光线中心python
时间: 2023-09-01 07:07:51 浏览: 274
以下是一个基本的Python实现Steger算法来提取激光线中心的例子:
```python
import cv2
import numpy as np
def steger_algorithm(img):
# 进行高斯平滑以减少噪声
img = cv2.GaussianBlur(img, (5, 5), 0)
# 求出图像的梯度
dx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
dy = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5)
mag = np.sqrt(dx ** 2 + dy ** 2)
# 二值化图像
thresh = cv2.threshold(mag, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# 进行形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# 计算距离变换
dist = cv2.distanceTransform(thresh, cv2.DIST_L2, 5)
dist = cv2.normalize(dist, None, 0, 1.0, cv2.NORM_MINMAX)
# 计算Hessian矩阵的特征值
hxx = cv2.Sobel(dx, cv2.CV_64F, 1, 0, ksize=5)
hyy = cv2.Sobel(dy, cv2.CV_64F, 0, 1, ksize=5)
hxy = cv2.Sobel(dx, cv2.CV_64F, 0, 1, ksize=5)
hessian = np.zeros(img.shape[:2] + (2, 2))
hessian[..., 0, 0] = hxx
hessian[..., 0, 1] = hxy
hessian[..., 1, 0] = hxy
hessian[..., 1, 1] = hyy
lambda1, lambda2 = cv2.eigen(hessian)
# 计算线中心
center = np.zeros_like(img)
center[dist > 0.5] = 255
center[lambda2 < 0] = 0
center[lambda1 > 0.01] = 0
return center
```
以上代码假设输入的图像是灰度图像。它首先进行高斯平滑以减少噪声,然后计算图像的梯度,并将其平方和开方以获得梯度幅值。接下来,它对梯度幅值进行二值化,并通过形态学操作来消除噪声。然后,它计算距离变换,并归一化到0到1之间。接下来,它计算Hessian矩阵的特征值,并使用它们来确定激光线的中心。最后,它返回一个二值图像,其中1表示激光线的中心。
阅读全文