用matlab写出牛顿法解这个函数z = 3.2+1.7*(6 R1+8 R2+8R3+21R4+6R5+3R6+18 R7+8 R8+6*R9)的代码/84;
时间: 2023-09-14 18:05:21 浏览: 101
可以使用Matlab的符号计算工具箱来实现牛顿法求解方程。以下是代码示例:
syms R1 R2 R3 R4 R5 R6 R7 R8 R9
% 定义函数
f = 3.2+1.7*(6*R1+8*R2+8*R3+21*R4+6*R5+3*R6+18*R7+8*R8+6*R9)/84;
% 定义初值
x0 = [0; 0; 0; 0; 0; 0; 0; 0; 0];
% 定义迭代次数和精度
max_iter = 100;
tol = 1e-6;
% 迭代求解
iter = 0;
while iter < max_iter
% 计算函数值和雅可比矩阵
f_value = subs(f, [R1, R2, R3, R4, R5, R6, R7, R8, R9], x0);
J = jacobian(f, [R1, R2, R3, R4, R5, R6, R7, R8, R9]);
J_value = subs(J, [R1, R2, R3, R4, R5, R6, R7, R8, R9], x0);
% 计算新的解
x1 = x0 - inv(J_value) * f_value;
% 判断是否达到精度要求
if norm(x1 - x0) < tol
break;
end
% 更新迭代次数和解
iter = iter + 1;
x0 = x1;
end
% 输出结果
if iter == max_iter
fprintf('达到最大迭代次数,无法求解\n');
else
fprintf('解为:\n');
disp(x1);
end
需要注意的是,在使用Matlab的符号计算工具箱时,需要使用符号变量来定义函数和解向量。同时,由于Matlab计算中存在数值误差,因此在判断是否达到精度要求时,应该使用向量的范数来进行比较。
阅读全文
相关推荐
















