super(torch.utils.data.Dataset, self).__init__() self.root = root # 数据集的根路径 self.is_train = is_train # 数据集是否用于训练? self.images, self.labels = self._prepare_data() # 将提前准备的数据集的数据存入images和labels

时间: 2023-06-01 08:06:31 浏览: 57
这是Python中的一行代码,用于初始化一个类。它继承了torch.utils.data.Dataset类,并调用了其父类的__init__()方法。self.root是一个类的属性,表示数据集的根目录。
相关问题

class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle def __iter__(self): if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def build_dataloader(dataset_cfg, class_names, batch_size, dist, root_path=None, workers=4, seed=None, logger=None, training=True, merge_all_iters_to_one_epoch=False, total_epochs=0): dataset = __all__[dataset_cfg.DATASET]( dataset_cfg=dataset_cfg, class_names=class_names, root_path=root_path, training=training, logger=logger, ) if merge_all_iters_to_one_epoch: assert hasattr(dataset, 'merge_all_iters_to_one_epoch') dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs) if dist: if training: sampler = torch.utils.data.distributed.DistributedSampler(dataset) else: rank, world_size = common_utils.get_dist_info() sampler = DistributedSampler(dataset, world_size, rank, shuffle=False) else: sampler = None dataloader = DataLoader( dataset, batch_size=batch_size, pin_memory=True, num_workers=workers, shuffle=(sampler is None) and training, collate_fn=dataset.collate_batch, drop_last=False, sampler=sampler, timeout=0, worker_init_fn=partial(common_utils.worker_init_fn, seed=seed) ) return dataset, dataloader, sampler

这段代码是一个用于构建数据加载器的函数。它接受一些参数,包括数据集的配置、类别名称、批次大小、分布式训练标志、数据集的根路径等。 首先,根据数据集的配置和其他参数,创建一个数据集对象。 如果设置了 `merge_all_iters_to_one_epoch` 标志为 `True`,则调用数据集对象的 `merge_all_iters_to_one_epoch` 方法,将所有迭代器合并到一个周期中。 接下来,如果分布式训练标志为 `True`,则根据训练模式创建相应的采样器。对于训练模式,使用 `torch.utils.data.distributed.DistributedSampler` 创建采样器;对于非训练模式,根据当前进程的排名和世界大小创建 `DistributedSampler` 采样器,并设置 `shuffle` 参数为 `False`。 如果不是分布式训练,则采样器为 `None`。 最后,使用 `torch.utils.data.DataLoader` 创建数据加载器,传入数据集对象、批次大小、是否在训练模式下洗牌、数据集对象的 `collate_batch` 方法用于批量整理数据、是否丢弃最后一个批次、采样器以及其他参数。 函数返回数据集对象、数据加载器和采样器。

import torch import torch.nn as nn import torch.optim as optim import torchvision # datasets and pretrained neural nets import torch.utils.data import torch.nn.functional as F import torchvision.transforms as transforms transform = transforms.Compose([transforms.ToTensor(), ]) trainset = torchvision.datasets.MNIST(root='.\mydata', train=True, download=True, transform=transform) #文件夹地址可自定义 testset = torchvision.datasets.MNIST(root='.\mydata', train=False, download=True, transform=transform) #文件夹地址可自定义 trainloader = torch.utils.data.DataLoader(trainset, batch_size =32, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)写一个构建网络定义损失函数,优化器训练 迭代次数为10次 模型评测尝试将数据集更改为FashionMNIST或者CIFIR10再训练模型,或对比卷积神经网络和全连接神经网络模型的预测准确度,或尝试数据增强方法的代码

好的,这里是一个简单的代码示例,包括构建网络、定义损失函数、优化器、训练和评估模型的步骤。同时,也包括了针对FashionMNIST数据集和CIFAR10数据集的代码,以及卷积神经网络和全连接神经网络模型的比较,以及数据增强方法的代码。 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torch.utils.data import torch.nn.functional as F import torchvision.transforms as transforms # 数据集选项 dataset = 'MNIST' # 可以选择'MNIST', 'FashionMNIST'或者'CIFAR10' data_root = './data' # 数据集存储的文件夹地址 # 构建网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28 * 28, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = x.view(-1, 28 * 28) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义损失函数和优化器 net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 加载数据集 if dataset == 'MNIST': trainset = torchvision.datasets.MNIST(root=data_root, train=True, download=True, transform=transforms.ToTensor()) testset = torchvision.datasets.MNIST(root=data_root, train=False, download=True, transform=transforms.ToTensor()) elif dataset == 'FashionMNIST': trainset = torchvision.datasets.FashionMNIST(root=data_root, train=True, download=True, transform=transforms.ToTensor()) testset = torchvision.datasets.FashionMNIST(root=data_root, train=False, download=True, transform=transforms.ToTensor()) elif dataset == 'CIFAR10': trainset = torchvision.datasets.CIFAR10(root=data_root, train=True, download=True, transform=transforms.ToTensor()) testset = torchvision.datasets.CIFAR10(root=data_root, train=False, download=True, transform=transforms.ToTensor()) else: raise ValueError('Invalid dataset name') trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') # 评估模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 针对FashionMNIST数据集和CIFAR10数据集的代码仅需要改变数据集的名称和地址即可。卷积神经网络和全连接神经网络模型的比较可以使用以下代码: ```python # 定义卷积神经网络 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=5, padding=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=5, padding=2) self.fc1 = nn.Linear(32 * 7 * 7, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 32 * 7 * 7) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义全连接神经网络 class FCNet(nn.Module): def __init__(self): super(FCNet, self).__init__() self.fc1 = nn.Linear(28 * 28, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = x.view(-1, 28 * 28) x = F.relu(self.fc1(x)) x = self.fc2(x) return x if dataset == 'MNIST' or dataset == 'FashionMNIST': net = FCNet() elif dataset == 'CIFAR10': net = ConvNet() else: raise ValueError('Invalid dataset name') # 训练和评估模型的代码和之前相同 ``` 最后,以下是数据增强的代码示例,可以在训练数据集上应用随机的图像变换,从而增加数据集的多样性和泛化性能。 ```python # 数据增强 train_transform = transforms.Compose([ transforms.RandomCrop(28, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ]) trainset = torchvision.datasets.MNIST(root=data_root, train=True, download=True, transform=train_transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True) # 训练模型的代码和之前相同 ``` 需要注意的是,在评估模型时,不应该使用数据增强,因为这会导致测试结果不准确。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 batch_size = 64 learning_rate = 0.001 num_epochs = 10 # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), # 转换为Tensor类型 transforms.Normalize((0.1307,), (0.3081,)) # 标准化,使得均值为0,标准差为1 ]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='C:/MNIST', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='C:/MNIST', train=False, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.pool(out) out = out.view(-1, 64 * 7 * 7) out = self.fc1(out) out = self.relu3(out) out = self.fc2(out) return out # 实例化模型并定义损失函数和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个batch打印一次训练信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() # 进入测试模式,关闭Dropout和BatchNormalization层 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))运行一下此代码

import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.autograd import Variable from torchvision.datasets import ImageFolder from torchvision.transforms import transforms from torch.utils.data import DataLoader # 定义超参数 num_epochs = 10 batch_size = 32 learning_rate = 0.001 # 定义数据转换方式 transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) # 加载数据集 train_dataset = ImageFolder(root='./ChineseStyle/train/', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = ImageFolder(root='./ChineseStyle/test/', transform=transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 定义卷积神经网络结构 class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=2) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=32, kernel_size=5, stride=1, padding=2) self.fc1 = nn.Linear(in_features=32 * 8 * 8, out_features=128) self.fc2 = nn.Linear(in_features=128, out_features=15) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 实例化卷积神经网络 net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将输入和标签转换为变量 images = Variable(images) labels = Variable(labels) # 将梯度清零 optimizer.zero_grad() # 向前传递 outputs = net(images) # 计算损失函数 loss = criterion(outputs, labels) # 反向传播和优化 loss.backward() optimizer.step() # 打印统计信息 if (i + 1) % 100 == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' % (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.item())) # 测试模型 correct = 0 total = 0 for images, labels in test_loader: # 向前传递 outputs = net(Variable(images)) # 获取预测结果 _, predicted = torch.max(outputs.data, 1) # 更新统计信息 total += labels.size(0) correct += (predicted == labels).sum() # 计算准确率 print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))有没有测试到测试集

我希望你充当一个代码编译人员的角色,将下述Python代码编译成符合Mips32位指令集的,并且能在Mars仿真器中运行的汇编代码,代码如下:import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import ToTensor # 定义 MLP 神经网络模型 class MLP(nn.Module): def __init__(self, input_size, hidden_size1, hidden_size2, output_size): super(MLP, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(hidden_size1, hidden_size2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(hidden_size2, output_size) def forward(self, x): x = self.relu1(self.fc1(x)) x = self.relu2(self.fc2(x)) x = self.fc3(x) return x # 设置超参数 input_size = 784 hidden_size1 = 100 hidden_size2 = 200 output_size = 10 learning_rate = 0.001 num_epochs = 10 batch_size = 64 # 准备数据集 train_dataset = MNIST(root='.', train=True, transform=ToTensor(), download=True) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) # 创建模型实例 model = MLP(input_size, hidden_size1, hidden_size2, output_size) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将图像数据展平 images = images.reshape(-1, input_size) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每迭代100个批次,打印一次损失信息 if (i + 1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch + 1, num_epochs, i + 1, total_step, loss.item())) print("训练完成!")

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略

![MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略](http://xiaoyuge.work/explain-sql/index/2.png) # 1. MySQL数据库性能优化概述** MySQL数据库性能优化是一项至关重要的任务,可以显著提高应用程序的响应时间和整体用户体验。优化涉及识别和解决影响数据库性能的因素,包括硬件资源瓶颈、软件配置不当和数据库设计缺陷。通过采取适当的优化策略,可以显著提升数据库性能,满足业务需求并提高用户满意度。 # 2. MySQL数据库性能下降的幕后真凶 ### 2.1 硬件资源瓶颈 #### 2.1.1 CPU利用率过高 **症状:
recommend-type

如何在unity创建按钮

在 Unity 中创建按钮的步骤如下: 1. 在 Unity 中创建一个 UI Canvas,选择 GameObject -> UI -> Canvas。 2. 在 Canvas 中创建一个按钮,选择 GameObject -> UI -> Button。 3. 在场景视图中调整按钮的位置和大小。 4. 在 Inspector 中设置按钮的文本、颜色、字体等属性。 5. 添加按钮的响应事件,选择按钮,在 Inspector 的 On Click () 中添加相应的方法。 这样就可以创建一个按钮了,你可以在游戏中使用它来触发相应的操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

表锁问题全解析,深度解读MySQL表锁问题及解决方案

![表锁问题全解析,深度解读MySQL表锁问题及解决方案](https://img-blog.csdnimg.cn/img_convert/a89711a10f6b856a777a9eed389c5112.png) # 1. 表锁基础** 表锁是一种数据库并发控制机制,用于防止多个事务同时访问和修改同一行或表中的数据,从而保证数据的完整性和一致性。表锁通过对表或表中的特定行施加锁来实现,以确保在事务完成之前,其他事务不能对这些数据进行修改。 表锁分为两种主要类型:共享锁(S锁)和排他锁(X锁)。共享锁允许多个事务同时读取同一行或表中的数据,但不能修改。排他锁则允许一个事务独占地访问和修改同
recommend-type

电脑上怎么获取文件路径

在 Windows 操作系统中,你可以按住 Shift 键并右键单击文件或文件夹,然后选择“复制为路径”选项,该选项会将文件或文件夹的路径复制到剪贴板中。你也可以直接打开文件或文件夹所在的目录,然后在地址栏中复制路径。在 Mac 操作系统中,你可以在 Finder 中选中文件或文件夹,然后从菜单栏中选择“文件”->“获取信息”,在弹出的窗口中可以找到文件或文件夹的路径。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩