DQN的经验回放怎么用代码实现
时间: 2024-11-13 10:16:04 浏览: 3
DQN(Deep Q-Network)的经验回放通常在PyTorch或TensorFlow这样的深度学习框架中实现。这里简单介绍一下基本步骤:
1. 初始化缓冲区:创建一个空列表或者固定大小的数组(如`deque`在Python的collections模块中),用于存储<state, action, reward, next_state>四元组。
```python
import collections
experience_replay = collections.deque(maxlen=buffer_size)
```
2. 每次环境交互后,保存经验:每当智能体执行一个动作,观察到回报并获得下一个状态,就将这个经历添加到缓冲区。
```python
transition = (current_state, action, reward, next_state)
experience_replay.append(transition)
```
3. 更新时从缓冲区随机采样:在训练阶段,从缓冲区随机选取一批经验作为mini-batch。例如:
```python
if len(experience_replay) > batch_size:
mini_batch = random.sample(experience_replay, batch_size)
else:
mini_batch = experience_replay
# 使用batch进行Q-learning更新
states, actions, rewards, next_states = zip(*mini_batch)
```
4. 训练网络:使用`states`, `actions`, `rewards`, `next_states`这四个变量更新DQN的网络,比如计算目标值和Q值,然后反向传播优化。
```python
target_q_values = model(next_states, target_model).max(dim=1)[0] * gamma + rewards
current_q_values = model(states, current_model)[range(batch_size), actions]
loss = F.smooth_l1_loss(target_q_values, current_q_values)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
阅读全文