torch se_resnet

时间: 2023-09-19 20:03:54 浏览: 51
torch se_resnet是基于PyTorch框架实现的一个用于图像分类任务的模型,其中SE指的是Squeeze-and-Excitation(压缩与激励)。SE模块是一种轻量级的注意力机制,能够有效提取图像特征。 SE_ResNet基于ResNet的基本结构,使用了残差块(Residual block)和shortcut连接。残差块可以帮助网络更好地进行特征传递,有助于解决梯度消失与梯度爆炸问题。而shortcut连接则能够在深层网络中减少信息的丢失。 在SE_ResNet中,SE模块被添加到每个残差块中,通过对每个通道进行全局平均池化操作,然后引入一个全连接层和激活函数(如Sigmoid)进行通道权重的学习。这样,SE模块可以学习到每个通道的重要性,并将重要的通道特征加权,从而增强了网络的表达能力。 相比于传统的ResNet模型,SE_ResNet引入了SE模块,能够更好地关注图像中各个通道的重要信息,从而提高了模型的性能。SE_ResNet在许多图像分类的基准数据集上取得了很好的表现,如ImageNet。此外,SE模块也可以与其他网络结构一同使用,提升模型的表达能力。 综上所述,torch se_resnet是基于PyTorch框架实现的一个图像分类模型,通过引入SE模块加强了通道特征的重要性学习,提高了模型的性能。
相关问题

class SizeBlock(nn.Module): def __init__(self, conv): super(SizeBlock, self).__init__() self.conv, inc = nc2dc(conv) self.glob = nn.Sequential( nn.Linear(2, 64), nn.ReLU(inplace=True), nn.Linear(64, 32) ) self.local = nn.Sequential( nn.Conv2d(inc, 32, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, 3, padding=1) ) self.fuse = nn.Sequential( nn.Conv2d(64, 32, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 3 * 3 * 2, 3, padding=1) ) self.relu = nn.ReLU() def forward(self, x, bsize): b, c, h, w = x.shape g_offset = self.glob(bsize) g_offset = g_offset.view(b, -1, 1, 1).repeat(1, 1, h, w).contiguous() l_offset = self.local(x) offset = self.fuse(torch.cat((g_offset, l_offset), dim=1)) fea = self.conv(x, offset) return self.relu(fea)和class ResBase(nn.Module): def __init__(self, res_name): super(ResBase, self).__init__() # model_resnet = res_dict[res_name](pretrained=False, norm_layer=BN_2D) model_resnet = res_dict[res_name](pretrained=True) self.sizeblock = SizeBlock self.conv1 = model_resnet.conv1 self.bn1 = model_resnet.bn1 self.relu = model_resnet.relu self.maxpool = model_resnet.maxpool self.layer1 = model_resnet.layer1 self.layer2 = model_resnet.layer2 self.layer3 = model_resnet.layer3 self.layer4 = model_resnet.layer4 self.avgpool = model_resnet.avgpool self.in_features = model_resnet.fc.in_features def forward(self, x, msize): print(x.shape) # torch.Size([8, 3, 384, 384]) x = self.sizeblock(x, msize) x = self.conv1(x) print(x.shape) # torch.Size([8, 64, 192, 192]) x = self.bn1(x) x = self.relu(x) # x = self.self.selist[1](x, msize) x = self.maxpool(x) print(x.shape) # torch.Size([8, 64, 96, 96]) x = self.layer1(x) print(x.shape) # torch.Size([8, 256, 96, 96]) # x = self.self.selist[2](x, msize) x = self.layer2(x) print(x.shape) # torch.Size([8, 512, 48, 48]) # x = self.self.selist[3](x, msize) x = self.layer3(x) # print(x.shape) # torch.Size([8, 1024, 24, 24]) x = self.layer4(x) # print(x.shape) # torch.Size([8, 2048, 12, 12]) x = self.avgpool(x) print(x.shape) # torch.Size([8, 2048, 1, 1]) x = x.view(x.size(0), -1) print(x.shape) # torch.Size([8, 2048]) a = input() return x,如何使用SizeBlock的forward函数

这是两个PyTorch的神经网络模块的定义代码。第一个模块是一个尺寸块,包含一个全局特征模块和一个本地特征模块,同时还有一个融合模块。该模块的输入是一组图像和一个块大小,并通过卷积层返回处理后的特征图像。第二个模块是一个残差基础模块,继承了PyTorch的nn.Module类。

se-resnet怎么冻结训练

要冻结SE-ResNet的训练,你可以通过设置其参数的requires_grad属性为False来实现。这将阻止参数在反向传播过程中更新。以下是一种冻结SE-ResNet训练的示例代码: ```python import torch import torchvision.models as models # 加载预训练的SE-ResNet模型 model = models.se_resnet50(pretrained=True) # 冻结所有参数 for param in model.parameters(): param.requires_grad = False # 将最后一层全连接层的参数解冻,以便进行微调 for param in model.fc.parameters(): param.requires_grad = True # 打印模型结构,确保参数已成功冻结 print(model) ``` 在上述代码中,我们首先加载了预训练的SE-ResNet模型。然后,我们遍历模型的所有参数,并将它们的requires_grad属性设置为False,从而冻结它们的训练。最后,我们将最后一层全连接层的参数解冻,以便进行微调。 请注意,这只是一种冻结SE-ResNet训练的方法,你可以根据需要进行调整和修改。

相关推荐

最新推荐

recommend-type

【车牌识别】 GUI BP神经网络车牌识别(带语音播报)【含Matlab源码 668期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4
recommend-type

3文件需求申请单.xls

3文件需求申请单.xls
recommend-type

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】.zip

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】
recommend-type

GOGO语言基础教程、实战案例和实战项目讲解

GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。