power_pos = positional_encoding(time_step, d_power) power_enc = Dense(d_power, activation='relu')(input1new) power_embed = power_pos + power_enc
时间: 2023-09-11 18:07:55 浏览: 133
这段代码使用了位置嵌入来增强输入数据的表示。假设 `time_step` 是输入序列的长度,`d_power` 是位置嵌入向量的维度。
首先,通过调用 `positional_encoding(time_step, d_power)` 函数生成一个形状为 `(time_step, d_power)` 的位置嵌入矩阵 `power_pos`。该位置嵌入矩阵将用于表示输入序列中元素的位置信息。
接下来,将输入数据 `input1new` 通过全连接层 `Dense(d_power, activation='relu')` 进行线性变换,并应用激活函数ReLU。这将生成一个形状为 `(time_step, d_power)` 的表示向量 `power_enc`,其中每个元素表示输入序列中对应位置的表示。
最后,通过将位置嵌入矩阵 `power_pos` 与表示向量 `power_enc` 相加,得到一个形状相同的表示向量 `power_embed`。这样,`power_embed` 将包含元素的位置信息和原始表示的特征。
这种方法可以帮助模型更好地捕捉输入序列中元素的位置相关性,从而提高模型在处理序列数据时的性能。请注意,这只是代码片段的一部分,可能还需要根据具体的任务和模型进行适当的修改和调整。
相关问题
设置 on_delete=models.DO_NOTHING报错
根据引用\[1\]和引用\[3\]的内容,当设置`on_delete=models.DO_NOTHING`时,可能会出现错误。错误信息可能是"Field specifies on_delete=DO_NOTHING, but has no default value."或者"Field specifies on_delete=DO_NOTHING, but cannot be null."。这是因为`on_delete=models.DO_NOTHING`的设置要求字段不能为null,并且需要设置默认值。所以解决这个问题的方法之一是在参数中加上`on_delete=models.DO_NOTHING`并且为字段设置默认值或者将字段设置为可空。另外,根据引用\[2\]的内容,将`on_delete`属性设置为`models.CASCADE`也是一种解决方案。所以你可以尝试将`on_delete`属性设置为`models.CASCADE`来解决这个问题。
#### 引用[.reference_title]
- *1* *2* [运行报错provider = models.ForeignKey(Provider, on_delete=True) TypeError(‘on_delete must be ...](https://blog.csdn.net/qq_32057095/article/details/108845704)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [调用models.ForeignKey时报“TypeError: __init__() missing 1 required positional argument: 'on_delete'...](https://blog.csdn.net/lucy82910/article/details/79280734)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
classification_report(zero_division=False)
The `classification_report()` function is a utility function from the scikit-learn library that generates a text report showing the main classification metrics for a given set of predictions and true labels. These metrics include precision, recall, F1-score, and support for each class.
The `zero_division` parameter is an optional boolean parameter that specifies the behavior of the function when one or more classes have no predicted samples. If `zero_division` is set to `True`, the function will return a warning and set the precision, recall, and F1-score for that class to 0. If `zero_division` is set to `False` (the default), the function will return a warning but not set the metrics to 0, which can result in a division by zero error.
For example, the following code generates a classification report for a set of predictions and true labels, with `zero_division` set to `False`:
```
from sklearn.metrics import classification_report
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
print(classification_report(y_true, y_pred, zero_division=False))
```
This will output the following report:
```
precision recall f1-score support
0 0.67 1.00 0.80 2
1 0.00 0.00 0.00 2
2 0.50 1.00 0.67 2
accuracy 0.58 6
macro avg 0.39 0.67 0.49 6
weighted avg 0.39 0.58 0.45 6
C:\Users\User\AppData\Local\Programs\Python\Python38\lib\site-packages\sklearn\utils\validation.py:70: FutureWarning: Pass zero_division=False as keyword args. From version 0.25 passing these as positional arguments will result in an error
warnings.warn("Pass {0} as keyword args. From version 0.25 "
```
Note that the warning is generated because `zero_division` was passed as a positional argument instead of a keyword argument. To avoid the warning, we can pass it as a keyword argument:
```
print(classification_report(y_true, y_pred, zero_division=True))
```
This will include the support for each class even if there were no predicted samples for that class.
阅读全文