F.binary_cross_entropy报错
时间: 2023-09-24 21:04:52 浏览: 189
当你遇到 `F.binary_cross_entropy` 报错时,通常是因为参数的类型不正确或者参数的形状不匹配。`F.binary_cross_entropy` 是用于计算二分类问题中的交叉熵损失函数的函数。
要解决这个问题,你可以尝试以下几个步骤:
1. 确保你的输入数据和标签数据的类型正确。`F.binary_cross_entropy` 函数需要输入的数据类型为浮点数类型(float),并且数据范围应该在0到1之间。如果你的数据不符合这些要求,你可以使用 `torch.tensor` 将其转换为正确的类型和范围。
2. 检查输入数据和标签数据的形状是否匹配。`F.binary_cross_entropy` 函数需要输入的数据形状为 (N, *),其中 N 是样本数量,* 表示任意维度。标签数据的形状应该与输入数据的形状相同。
3. 确保你的模型输出的概率值已经经过 sigmoid 函数处理。`F.binary_cross_entropy` 函数需要输入的概率值是经过 sigmoid 函数处理后的结果,以确保在0到1之间。
4. 如果上述步骤都没有解决问题,你可以尝试检查其他相关参数,例如权重、忽略索引等。
如果你能提供更多关于错误信息、代码示例以及你正在解决的具体问题的信息,我可以提供更具体的帮助。
相关问题
File "E:/403/myworld/VGAE/trainTest.py", line 41, in loss_function recon_loss = dgl.losses.binary_cross_entropy(output, adj) # 重构误差 报错:AttributeError: module 'dgl' has no attribute 'losses'
根据错误提示,`dgl`模块中似乎没有名为`losses`的属性,因此无法使用`dgl.losses.binary_cross_entropy`方法。
如果您想使用DGL提供的二元交叉熵损失函数,可以使用`torch.nn.BCEWithLogitsLoss`类,该类已经包含在PyTorch中。
下面是一个使用`torch.nn.BCEWithLogitsLoss`类计算二元交叉熵损失的示例代码:
```python
import torch
import dgl
import numpy as np
with open('graph.bin', 'rb') as f:
graph_data = np.load(f, allow_pickle=True)
graph = dgl.graph((graph_data['edge_index'][0], graph_data['edge_index'][1]))
adj = (graph_data['adjacency_matrix'] != 0).astype(np.float32)
model = MyModel()
output = model(graph)
criterion = torch.nn.BCEWithLogitsLoss()
recon_loss = criterion(output.view(-1), torch.from_numpy(adj).view(-1))
```
在上述示例代码中,我们使用`torch.nn.BCEWithLogitsLoss`类计算二元交叉熵损失,并将输出`output`和邻接矩阵`adj`转换为一维向量进行计算。
需要注意的是,如果您的DGL版本较老,可能没有提供`dgl.losses`模块。如果需要使用DGL提供的损失函数,可以尝试升级DGL到最新版本。
下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def __init__(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out)
这个错误提示是因为在调用`build_discriminator`方法时,缺少了必要的参数`cell`。这表明您在`Model`类中定义了一个名为`build_discriminator`的方法,并且该方法需要一个名为`cell`的参数,但是在实例化`Model`对象时没有传递该参数。
您需要检查`build_discriminator`方法的定义,看看它是否确实需要`cell`参数,并且如果需要,您需要在实例化`Model`对象时传递该参数。
阅读全文