all_features = all_features.fillna(method='bfill', axis=0).fillna(0)
时间: 2024-04-17 08:27:28 浏览: 103
这段代码是用来填充缺失值的。`all_features` 是一个数据框(DataFrame)或数据表(Table),其中包含了一些特征(features)。`fillna` 函数被调用并传入了两个参数:`method='bfill'` 和 `axis=0`。
`method='bfill'` 表示使用后向填充的方法,即用后面的非缺失值来填充当前的缺失值。`axis=0` 表示沿着纵向(列)的方向进行填充。
首先,`fillna(method='bfill', axis=0)` 会将所有的缺失值用后面的非缺失值来填充。然后,`.fillna(0)` 会将剩余的缺失值(如果有的话)用 0 来填充。
最终,`all_features` 数据框中的所有缺失值会被填充,使得数据框中不再包含任何缺失值。
相关问题
帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()
# Define a class named 'SimpleDeepForest'
class SimpleDeepForest:
# Initialize the class with 'n_layers' parameter
def __init__(self, n_layers):
self.n_layers = n_layers
self.forest_layers = []
# Define a method named 'fit' to fit the dataset into the classifier
def fit(self, X, y):
X_train = X
# Use the forest classifier to fit the dataset for 'n_layers' times
for _ in range(self.n_layers):
clf = RandomForestClassifier()
clf.fit(X_train, y)
# Append the classifier to the list of forest layers
self.forest_layers.append(clf)
# Concatenate the training data with the predicted probability of the last layer
X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1)
# Return the classifier
return self
# Define a method named 'predict' to make predictions on the test set
def predict(self, X):
X_test = X
# Concatenate the test data with the predicted probability of each layer
for i in range(self.n_layers):
X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1)
# Return the predictions of the last layer
return self.forest_layers[-1].predict(X_test[:, :-2])
# Define a function named 'extract_features' to extract sequence features
def extract_features(fasta_file):
features = []
# Parse the fasta file to extract sequence features
for record in SeqIO.parse(fasta_file, "fasta"):
seq = record.seq
gc_content = (seq.count("G") + seq.count("C")) / len(seq)
seq_len = len(seq)
features.append([gc_content, seq_len])
# Return the array of features
return np.array(features)
# Define a function named 'create_dataset' to create the dataset
def create_dataset(rna_features, protein_features, label_file):
labels = pd.read_csv(label_file, index_col=0)
X = []
y = []
# Create the dataset by concatenating the RNA and protein features
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
X.append(np.concatenate([rna_features[i], protein_features[j]]))
y.append(labels.iloc[i, j])
# Return the array of features and the array of labels
return np.array(X), np.array(y)
# Define a function named 'optimize_deepforest' to optimize the deep forest classifier
def optimize_deepforest(X, y):
# Split the dataset into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create an instance of the SimpleDeepForest classifier with 3 layers
model = SimpleDeepForest(n_layers=3)
# Fit the training set into the classifier
model.fit(X_train, y_train)
# Make predictions on the testing set
y_pred = model.predict(X_test)
# Print the classification report
print(classification_report(y_test, y_pred))
# Define the main function to run the program
def main():
rna_fasta = "RNA.fasta"
protein_fasta = "pro.fasta"
label_file = "label.csv"
# Extract the RNA and protein features
rna_features = extract_features(rna_fasta)
protein_features = extract_features(protein_fasta)
# Create the dataset
X, y = create_dataset(rna_features, protein_features, label_file)
# Optimize the DeepForest classifier
optimize_deepforest(X, y)
# Check if the program is being run as the main program
if __name__ == "__main__":
main()
我要把feature_type_mean放在横轴其他位置,请增加代码,#这种初始化操作可以用来创建一个空的数据结构,用于后续存储和填充数据。在这种情况下,DataFrame的所有元素被初始化为0,准备接收进一步的数据填充。 filter_features = pd.DataFrame(0, index=filter_names, columns=feature_type_names, ) for key in c: for filter_name in filter_names: for feature_type_name in feature_type_names: if filter_name in key and feature_type_name in key: # print(filter_name, feature_type_name, key, c[key]) filter_features.loc[filter_name, feature_type_name] += c[key] filter_features['filter_mean'] = filter_features.mean(axis = 1) filter_features.loc['feature_type_mean'] = filter_features.mean(axis = 0) # %% plt.figure(figsize=(8, 12), dpi=300) sns.set_style('white', {'font.sans-serif': ['simsun', 'Times New Roman'], "size": 6}) ax = sns.heatmap(filter_features, # .apply(np.log1p), #vmin=5, vmax=17, fmt=".3f", annot=False, cmap="YlOrBr",#"vlag",#"YlOrBr", # cmap="RdBu_r", annot_kws={"size": 6}, square=True ) # label_y = ax.get_yticklabels() # plt.setp(label_y, rotation=45) # label_x = ax.get_xticklabels() # plt.setp(label_x, rotation=45) # plt.tick_params(labelsize=6) plt.show()
To move the 'feature_type_mean' column to a different position in the DataFrame, you can use the `reindex` method of pandas DataFrame. Here's the modified code:
```
filter_features = pd.DataFrame(0, index=filter_names, columns=feature_type_names)
for key in c:
for filter_name in filter_names:
for feature_type_name in feature_type_names:
if filter_name in key and feature_type_name in key:
filter_features.loc[filter_name, feature_type_name] += c[key]
filter_features['filter_mean'] = filter_features.mean(axis=1)
# Calculate the mean of each column and store it in a new DataFrame
feature_type_mean = filter_features.mean(axis=0)
feature_type_mean_df = pd.DataFrame(feature_type_mean, columns=['feature_type_mean'])
# Reorder the columns in the DataFrame
filter_features = pd.concat([feature_type_mean_df, filter_features.drop(columns=['feature_type_mean'])], axis=1)
plt.figure(figsize=(8, 12), dpi=300)
sns.set_style('white', {'font.sans-serif': ['simsun', 'Times New Roman'], "size": 6})
ax = sns.heatmap(filter_features, fmt=".3f", annot=False, cmap="YlOrBr", annot_kws={"size": 6}, square=True)
plt.show()
```
In this modified code, the `feature_type_mean` column is calculated separately and stored in a new DataFrame `feature_type_mean_df`. Then, the `concat()` method is used to combine this DataFrame with the original `filter_features` DataFrame, but with the columns reordered. Finally, the heatmap is plotted using the modified `filter_features` DataFrame.
阅读全文