ga-svm的python代码
时间: 2023-09-12 11:00:26 浏览: 149
ga-svm是一种支持向量机(Support Vector Machine)算法的变种,它使用遗传算法(Genetic Algorithm)来优化支持向量机的超参数。
下面是一个基于Python的实现代码示例:
```python
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
# 设置遗传算法参数
POPULATION_SIZE = 50 # 种群大小
GENERATION_NUM = 100 # 迭代代数
CROSSOVER_PROB = 0.8 # 交叉概率
MUTATION_PROB = 0.1 # 变异概率
# 初始化种群
def init_population():
population = []
for _ in range(POPULATION_SIZE):
# 随机生成C和gamma的取值
C = np.random.uniform(0.1, 10)
gamma = np.random.uniform(0.1, 5)
population.append([C, gamma])
return population
# 评估适应度函数
def evaluate_fitness(population, X, y):
fitness = []
for ind in population:
# 创建支持向量机模型,使用交叉验证计算适应度
svc = SVC(C=ind[0], gamma=ind[1])
score = cross_val_score(svc, X, y, cv=5).mean() # 5折交叉验证
fitness.append(score)
return fitness
# 选择操作
def selection(population, fitness):
# 根据适应度值进行排序
sorted_indices = np.argsort(fitness)
# 选择适应度较高的个体
selected_population = [population[i] for i in sorted_indices[-POPULATION_SIZE:]]
return selected_population
# 交叉操作
def crossover(population):
new_population = []
for _ in range(POPULATION_SIZE):
# 随机选择两个个体
parent1, parent2 = np.random.choice(population, size=2, replace=False)
if np.random.rand() < CROSSOVER_PROB:
# 按一定比例交叉生成新个体
child = [parent1[0], parent2[1]]
else:
# 保留原个体
child = parent1
new_population.append(child)
return new_population
# 变异操作
def mutation(population):
for ind in population:
if np.random.rand() < MUTATION_PROB:
# 对C和gamma进行随机变异
ind[0] = np.random.uniform(0.1, 10)
ind[1] = np.random.uniform(0.1, 5)
return population
# 主函数
def ga_svm(X, y):
population = init_population()
for _ in range(GENERATION_NUM):
fitness = evaluate_fitness(population, X, y)
population = selection(population, fitness)
population = crossover(population)
population = mutation(population)
# 选择最佳个体
best_ind = population[np.argmax(fitness)]
return best_ind
# 使用示例
X = np.array([[0, 0], [1, 1]])
y = np.array([0, 1])
best_ind = ga_svm(X, y)
print('Best individual:', best_ind)
```
以上是一个用Python实现的基于遗传算法的SVM代码示例,该代码通过遗传算法优化SVM的超参数选取,以获得更好的分类性能。代码中使用了`sklearn`库中的SVC类来建立支持向量机模型,使用5折交叉验证评估模型性能。遗传算法中的选择、交叉和变异操作通过相应的函数实现。最终输出的是训练出的最佳个体,对应的C和gamma参数。这个示例可以根据具体的数据集和问题进行配置和调整。
阅读全文