使用Graham扫描算法求点组的最小凸包,返回的是一个列表的列表,子列表由线段起点和终点组成,最后打印并使用matplotlib.pyplot进行可视化
时间: 2024-09-21 08:06:39 浏览: 47
Graham扫描算法[^1]可以用来求解二维空间中一组点的凸包。以下是如何使用Python实现这一过程:
首先,我们需要导入必要的库:
```python
import matplotlib.pyplot as plt
from scipy.spatial import ConvexHull
```
然后定义一个简单的点集(这里假设为二维坐标):
```python
points = [(1, 1), (3, 1), (3, 3), (1, 3)]
```
接着,我们调用`ConvexHull`类计算凸包:
```python
hull = ConvexHull(points)
vertices = hull.vertices
```
`vertices`变量现在存储了凸包的顶点索引,我们可以从原始点集中提取这些顶点来形成线段:
```python
edges = [[points[vertex_i], points[vertex_j]] for vertex_i, vertex_j in zip(vertices, vertices[1:] + [vertices[0]])]
```
绘制凸包:
```python
plt.plot([point[0] for point in points], [point[1] for point in points], 'o')
for edge in edges:
plt.plot(*zip(edge))
plt.gca().set_aspect('equal', adjustable='box') # 设置坐标轴比例相同
plt.show()
```
这段代码会生成一个图形,显示了点集及其最小凸包。
阅读全文
相关推荐


















