加速此Python代码:def f(x): x=x/500 xx=x**4 yy=x**4 return xx*yy a= Parallel(n_jobs=2)(delayed(f)(i) for i in range(1000)) print(a)
时间: 2023-10-11 15:11:41 浏览: 49
你可以尝试使用并行计算来加速这段代码。建议使用Python的`multiprocessing`模块来实现并行计算。下面是优化后的代码:
```python
from multiprocessing import Pool
def f(x):
x = x / 500
xx = x ** 4
yy = x ** 4
return xx * yy
if __name__ == '__main__':
with Pool(2) as p:
a = p.map(f, range(1000))
print(a)
```
在这个代码中,我们使用`multiprocessing.Pool`来创建一个包含2个进程的进程池。然后使用`map`函数来映射函数`f`到`range(1000)`中的每个元素,实现并行计算。最后,我们打印出结果`a`。
请注意,在Windows操作系统下,需要将代码放在`if __name__ == '__main__':`条件语句中,以避免在子进程中重复创建进程池。
此优化方法可帮助你利用多核处理器的并行计算能力,从而加速代码的执行速度。
相关问题
import numpy as np import math from scipy import integrate def f(x): return math.sin(x)*math.sin(x) #复化梯形法 def func(a,b,n,f): x = np.linspace(a,b,n+1) sum1 = 0 h =(b-a)/n for i in range(补充代码1): 补充代码2 return sum1 #复化辛普森法 def func1(a,b,n,f): x = np.linspace(a,b,n+1) sum1 = 0 h =(b-a)/n for i in range(补充代码3): 补充代码4 return sum1 #复化科特斯法 def func2(a,b,n,f): x = np.linspace(a,b,n+1) sum1 = 0 h =(b-a)/n for i in range( 补充代码5 ): 补充代码6 return sum1 answer = func(0,1,100,f) answer1 = func1(0,1,100,f) answer2 = func2(0,1,100,f) print(answer,answer1,answer2) #integrate积分作为精确值 value, error = integrate.quad(f,0, 1) print(value,error) print("error: ", abs(answer-value), abs(answer1-value), abs(answer2-value))import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文 标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 f=lambda x:np.sin(x)*np.sin(x) #向前差商 def fo_df(x,h): plt.plot([x-h,x],[f(x-h),f(x)],'r--',label='前') result= 补充代码7 return result #向后差商 def back_df(x,h): plt.plot([x,x+h],[f(x),f(x+h)],'k--',label='后') result= 补充代码8 return result#中心差商 def cen_df(x,h): a=(f(x-h)+f(x+h))/2 plt.plot([x-h,x+h],[f(x-h)+f(x)-a,f(x+h)+f(x)-a],'g--',label='中') result= 补充代码9 return result xx=np.linspace(-0.5,1.5,20) yy=f(xx) plt.plot(xx,yy) print('前',fo_df(0.5,0.5)) print('后',back_df(0.5,0.5)) print('中',cen_df(0.5,0.5)) plt.legend(loc='best') plt.show() xx=np.linspace(-1,1,20) yy=f(xx) plt.plot(xx,yy) print('前',fo_df(0.5,0.25)) print('后',back_df(0.5,0.25)) print('中',cen_df(0.5,0.25)) plt.legend(loc='best') plt.show()
代码中有一些没有补充的部分,我来帮你补充一下。
复化梯形法:
```python
def func(a,b,n,f):
x = np.linspace(a,b,n+1)
sum1 = 0
h =(b-a)/n
for i in range(n):
sum1 += (f(x[i])+f(x[i+1]))*h/2
return sum1
```
复化辛普森法:
```python
def func1(a,b,n,f):
x = np.linspace(a,b,n+1)
sum1 = 0
h =(b-a)/n
for i in range(n):
sum1 += h/6*(f(x[i])+4*f((x[i]+x[i+1])/2)+f(x[i+1]))
return sum1
```
复化科特斯法:
```python
def func2(a,b,n,f):
x = np.linspace(a,b,n+1)
sum1 = 0
h =(b-a)/n
for i in range(n//2):
sum1 += h/3*(f(x[2*i])+4*f((x[2*i]+x[2*i+1])/2)+f(x[2*i+1]))
return sum1
```
向前差商:
```python
def fo_df(x,h):
plt.plot([x-h,x],[f(x-h),f(x)],'r--',label='前')
result= (f(x)-f(x-h))/h
return result
```
向后差商:
```python
def back_df(x,h):
plt.plot([x,x+h],[f(x),f(x+h)],'k--',label='后')
result= (f(x+h)-f(x))/h
return result
```
中心差商:
```python
def cen_df(x,h):
a=(f(x-h)+f(x+h))/2
plt.plot([x-h,x+h],[f(x-h)+f(x)-a,f(x+h)+f(x)-a],'g--',label='中')
result= (f(x+h)-f(x-h))/(2*h)
return result
```
翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
这段程序是一个分类模型的辅助函数,包括了绘制决策边界、sigmoid函数和加载数据集的函数。具体实现如下:
```python
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# 设置最小值和最大值,并给它们一些填充
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# 生成一个网格,网格中点的距离为h
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# 对整个网格预测函数值
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘制轮廓和训练样本
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # 样本数量
N = int(m / 2) # 每个类的样本数量
# 生成数据集
D = 2 # 特征维度
X = np.zeros((m, D)) # 特征矩阵
Y = np.zeros((m, 1), dtype='uint8') # 标签向量
a = 4 # 花的最大半径
for j in range(2):
ix = range(N*j, N*(j+1))
t = np.linspace(j*3.12, (j+1)*3.12, N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
```
这段程序中包含了以下函数:
- `plot_decision_boundary(model, X, y)`:绘制分类模型的决策边界,其中`model`是分类模型,`X`是特征矩阵,`y`是标签向量。
- `sigmoid(x)`:实现sigmoid函数。
- `load_planar_dataset()`:加载一个二维的花瓣数据集。
- `load_extra_datasets()`:加载五个其他数据集。
阅读全文