交叉熵损失函数怎么计算
时间: 2024-04-06 17:27:34 浏览: 218
pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解
交叉熵损失函数是一种常用的用于衡量两个概率分布之间差异的指标,常用于分类问题中。在机器学习中,交叉熵损失函数通常用于衡量模型的预测结果与真实标签之间的差异。
对于二分类问题,交叉熵损失函数的计算公式如下:
L = - (y * log(p) + (1 - y) * log(1 - p))
其中,y表示真实标签(0或1),p表示模型的预测概率。
对于多分类问题,交叉熵损失函数的计算公式如下:
L = - ∑(y * log(p))
其中,y是一个one-hot编码的向量,表示真实标签,p是模型的预测概率向量。
需要注意的是,交叉熵损失函数中的log函数通常是自然对数。这是因为自然对数函数具有良好的数学性质,并且在概率论和信息论中有广泛应用。
阅读全文