prove that if t is bounded, everywheredefined, an isometry, then ran t i
时间: 2023-09-22 16:01:49 浏览: 81
要证明如果 t 是一个有界的、处处有定义的等距映射,那么 ran t 是全空间 V。首先,我们需要了解等距映射的性质。
一个映射 t 称为等距映射,如果它保持了两个向量之间的距离。也就是说,对于 V 中的任意两个向量 u 和 v,有 ||t(u) - t(v)|| = ||u - v||,其中 ||.|| 是向量的范数。
假设 t 是有界的,这意味着对于 V 中的任意向量 u,有 ||t(u)||≤ M,对于某个 M>0。从而对于任意 v∈ V,我们有 ||t(u) - t(u+v)|| = ||u - (u+v)|| = ||-v|| = ||v||,因此 ||t(u+v)|| = ||t(u) - t(u+v)||≤ ||u+v|| ≤ ||u|| + ||v||。
通过以上的不等式,我们可以证明 t 是一个开映射。如果 t 不是开映射,那么存在一个向量 u0∈ V 和一个正实数 ε>0,使得对于所有的向量 v,满足 ||v|| < ε,有 ||t(u0 + v)|| ≥ ε。但是,根据上面的不等式,当取 v = -u0 时,我们有 ||t(u0)|| = ||t(0)|| = ||t(u0 - u0)|| = ||u0 - u0|| = 0,这与 t 是一个等距映射矛盾。
由于 t 是一个开映射,那么它必定将整个 V 映射到它的像空间上。因此,ran t = t(V) = V,即 ran t 是全空间 V。
综上所述,如果 t 是一个有界的、处处有定义的等距映射,则 ran t 是全空间 V。
相关问题
Prove that if a1, a2,..., an are n ≥ 2 integers such that ai ≡ 1 (mod 3) for every integer i (1 ≤ i ≤ n), then a1a2 ··· an ≡ 1 (mod 3)
To prove this statement, we can use mathematical induction.
For n = 2, we have a1a2 ≡ 1 (mod 3) since both a1 and a2 are congruent to 1 modulo 3.
Assume the statement is true for n = k. That is, if a1, a2, ..., ak are integers such that ai ≡ 1 (mod 3) for every integer i (1 ≤ i ≤ k), then a1a2···ak ≡ 1 (mod 3).
Now, consider n = k + 1. We have ak+1 ≡ 1 (mod 3), since ak+1 is one of the given integers, and a1, a2, ..., ak are also congruent to 1 modulo 3. Thus,
a1a2···akak+1 ≡ (a1a2···ak)ak+1 ≡ 1×1 ≡ 1 (mod 3)
by the induction hypothesis.
Therefore, the statement is true for all n ≥ 2.
Note: I understand your request for confidentiality and will not disclose any information you have shared with me.
dy/dx=(y-1)(y-2) Prove that if y = f(x), x ∈ R, is a solution of (1), then y = f(x + c) is also a solution, where c ∈ R is constant.
To prove that y = f(x + c) is also a solution of the differential equation dy/dx=(y-1)(y-2), we need to show that:
(d/dx)f(x+c) = (f(x+c)-1)(f(x+c)-2)
To do this, we can use the chain rule of differentiation:
(d/dx)f(x+c) = df/d(x+c) * d(x+c)/dx
Since d(x+c)/dx = 1, we can simplify this to:
(d/dx)f(x+c) = df/d(x+c)
Now, let's substitute y = f(x) into the differential equation:
dy/dx = (y-1)(y-2)
Substituting x + c for x and f(x + c) for y, we get:
df/d(x+c) = (f(x+c)-1)(f(x+c)-2)
This is the same as what we need to prove, so we have shown that y = f(x + c) is also a solution of the differential equation.
阅读全文