sensitivity <- confusion_matrix[2, 2] / sum(confusion_matrix[2, ]) Error in `[.default`(confusion_matrix, 2, 2) : subscript out of bounds

时间: 2023-09-27 16:07:13 浏览: 194
这个错误表示在你的代码中,你尝试访问一个超出边界的索引。具体来说,你的 `confusion_matrix` 变量可能没有被正确定义或者其维度不符合你的访问方式。 在计算敏感性时,我们通常使用混淆矩阵(confusion matrix),它是一个2x2的矩阵,其中包括了真正例、假负例、假正例和真负例的数量。请确保你正确计算了混淆矩阵,并将其存储在 `confusion_matrix` 变量中。 以下是一个示例代码,展示如何计算敏感性(真正例率): ```R # 假设你已经计算了混淆矩阵,并存储在 confusion_matrix 变量中 # 计算敏感性 sensitivity <- confusion_matrix[2, 2] / sum(confusion_matrix[2, ]) # 打印结果 print(sensitivity) ``` 请确保在运行这段代码之前,你已经正确计算了混淆矩阵,并将其存储在 `confusion_matrix` 变量中。另外,确保 `confusion_matrix` 是一个2x2的矩阵,并且你想要获取的真正例的数量位于矩阵的第二行第二列位置。
相关问题

注释test2 <- as.data.frame(test[, cols]) colnames(test2) <- colnames(learn2[-ncol(learn2)]) test_predict <- as.vector(predict(z, test2)$x) test_predict <- rev * test_predict poly_func <- get_fisher_poly_func(a, cnames, b) Y <- learn[, ncol(learn)] mroc <- roc(Y, model_predict, plot = F, main = main, direction = "<", levels = c(0L, 1L) ) auc <- as.numeric(split(mroc$auc, "curve: ")[1]) thre_opt <- coords(mroc, "best", ret = c("threshold"), transpose = TRUE)[1] coords <- coords(mroc, thre_opt, "threshold", ret = c( "sensitivity", "specificity", "accuracy", "ppv", "npv" ), transpose = TRUE ) model_sens <- format(coords[1], digits = 4) model_spec <- format(coords[2], digits = 4) model_accu <- format(coords[3], digits = 4) model_ppv <- format(coords[4], digits = 4) model_npv <- format(coords[5], digits = 4) model_auc <- format(auc, digits = 4) Y <- test[, ncol(test)] mroc <- roc(Y, test_predict, plot = F, main = main, direction = "<", levels = c(0L, 1L) ) auc <- as.numeric(split(mroc$auc, "curve: ")[1]) coords <- coords(mroc, thre_opt, "threshold", ret = c( "sensitivity", "specificity", "accuracy", "ppv", "npv" ), transpose = TRUE )

这段代码看起来是在进行机器学习模型的评估,其中使用了ROC曲线和AUC指标来评估模型的性能。首先,使用了测试集数据test来进行预测,并计算了预测结果的AUC值。然后,从ROC曲线上获取了最佳阈值,并计算了在该阈值下的灵敏度、特异度、准确度、阳性预测值和阴性预测值等指标。最后,将这些指标的值进行格式化,并保存在model_sens、model_spec、model_accu、model_ppv和model_npv变量中,同时将AUC值格式化后保存在model_auc变量中。

#定义Richards模型 richards_model <- function(D, a, b, c) { H <- 1.3 + a * (1 - exp(-b * D))^c return(H) } #设置参数范围 D_range <- seq(1, 45, by = 1) a_range <- seq(0, 30, by = 1) b_range <- seq(0.1, 1, by = 0.1) c_range <- seq(0.1, 1, by = 0.1) #执行敏感性分析 sensitivity_df <- expand.grid(D = D_range, a = a_range, b = b_range, c = c_range) sensitivity_df$H <- richards_model(sensitivity_df$D, sensitivity_df$a, sensitivity_df$b, sensitivity_df$c) #计算参数对模型的影响 param_effect <- function(param_name) { sensitivity_df %>% group_by(across(-{{param_name}})) %>% summarize(mean_H = mean(H)) %>% mutate(delta_H = (mean_H - mean(H)) / mean(H) * 100) } install.packages("dplyr") # 安装dplyr包 library(dplyr) # 加载dplyr包 #输出结果 param_effect("a") param_effect("b") param_effect("c")

这段代码使用了R语言中的dplyr和expand.grid函数来进行Richards模型的敏感性分析,下面是对这段代码的详细解释: 首先,我们定义了Richards模型的函数,包含树高(H)和直径(D)两个变量,以及三个参数a、b、c,用于计算树高和直径之间的关系。在这个函数中,使用了指数函数和减法运算符,用于计算树高H的值。 接下来,我们使用seq函数定义了模型参数的范围,包括直径(D)、参数a、参数b和参数c的取值范围。这里通过by参数指定了步长,以便更细致地探究参数对模型的影响。 然后,我们使用expand.grid函数创建了一个数据框,其中包含所有可能的参数组合,以及对应的树高值。这里我们使用R语言的管道操作符 %>%,将数据框传递给summarize函数,计算了每组参数的平均树高,并将结果存储在mean_H列中。 最后,我们定义了一个名为param_effect的函数,该函数接受一个参数名作为输入,并计算该参数对模型输出的影响。该函数首先使用dplyr中的group_by函数对除了该参数之外的所有参数进行分组,然后计算每组参数的平均树高,并将结果存储在mean_H列中。接下来,该函数使用mutate函数计算该参数的变化量,即该参数在不同组之间的平均值差,以百分比的形式表示。 最后,我们安装了dplyr包,并对param_effect函数传入了三个不同的参数名,分别计算了参数a、b、c对模型输出的影响。这里使用了R语言的管道操作符,将计算结果输出到控制台。 希望这个解释能够帮助您理解这段代码的含义。
阅读全文

相关推荐

vector points; for (size_t i = 0; i < input->size(); i++) { float px = input->points[i].x; float py = input->points[i].y; float pz = input->points[i].z; float nx = input->points[i].normal_x; float ny = input->points[i].normal_y; float nz = input->points[i].normal_z; points.push_back(PointVectorPair(Kernel::Point_3(px, py, pz), Kernel::Vector_3(nx, ny, nz))); } // ---------------------------------参数设置--------------------------------- const double s_angle = 25; // 平滑度,值越大越平滑,取值范围[0,90] const double edge_s = 0; // 边缘的敏感性取值范围[0,1] const double n_radius = 0.25; // 邻域点搜索半径 const std::size_t n_out = points.size() * 10; // 上采样后的点数 // ----------------------------------上采样---------------------------------- CGAL::edge_aware_upsample_point_set<CGAL::Parallel_if_available_tag>(points, std::back_inserter(points), CGAL::parameters::point_map(CGAL::First_of_pair_property_map()). normal_map(CGAL::Second_of_pair_property_map()). sharpness_angle(s_angle). // 控制输出结果的平滑度,值越大越平滑,取值范围[0,90]。 edge_sensitivity(edge_s). // 边缘的敏感性取值范围[0,1],边缘敏感度越大,在尖锐边缘处插入点的有限度越高 neighbor_radius(n_radius). // 邻域点的个数,如果提供,查询点的邻域是用一个固定的球面计算的半径 // 而不是固定数量的邻居。在这种情况下,参数k用于限制每个球邻域返回点的数量(避免高密度区域的点过多) number_of_output_points(n_out)); // 上采样后的点数 std::cout << "上采样完毕!!!" << std::endl;将上述代码中的CGAL带有法线的点云数据转换PCL库点云数据PointNormal

最新推荐

recommend-type

keras中模型训练class_weight,sample_weight区别说明

例如,可以定义敏感性和特异性(sensitivity and specificity)作为模型的评价标准,这些指标在医疗诊断等领域尤为重要。敏感性衡量了模型正确识别正类的能力,而特异性则反映了模型正确识别负类的能力。在Keras中,...
recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->