二元逻辑斯蒂回归模型matlab
时间: 2024-05-09 22:12:35 浏览: 148
LogisticRegression 逻辑斯蒂回归 matlab 可运行
5星 · 资源好评率100%
二元逻辑斯蒂回归模型(Logistic Regression)是一种基于概率的统计学习方法,主要用于处理二分类问题。该模型利用逻辑斯蒂函数(logistic function)将输入变量的线性组合转化为对输出变量的概率预测。
在 MATLAB 中,可以使用内置函数 `glmfit` 实现二元逻辑斯蒂回归模型。这个函数可以拟合一个二元响应变量和一个或多个解释变量之间的关系。具体实现方法如下:
1. 准备数据。将数据划分为训练集和测试集,并将输入变量和响应变量分别存储在矩阵 `X` 和向量 `y` 中。
2. 调用 `glmfit` 函数。将 `X` 和 `y` 作为参数传递给 `glmfit` 函数,设置参数 `binomial` 表示使用二元逻辑斯蒂回归模型。
3. 获取模型参数。调用 `glmfit` 函数后,可以得到模型的系数向量 `b` 和常数项 `b0`。
4. 预测结果。使用得到的模型参数,在测试集上进行预测,并计算准确率。
阅读全文