二元逻辑回归模型原理
时间: 2024-04-07 11:26:01 浏览: 78
逻辑回归模型
二元逻辑回归模型是一种常用的分类算法,用于解决二分类问题。它基于线性回归模型,通过将线性回归的结果映射到一个概率值,并根据概率值进行分类。
该模型的原理如下:
1. 假设函数:假设我们有一个二元分类问题,其中输入特征为x,输出标签为y。我们使用一个假设函数h(x)来表示输入特征x对应的输出标签y的概率。假设函数可以表示为:h(x) = g(z),其中z是一个线性函数,g是一个称为“逻辑函数”或“Sigmoid函数”的非线性函数。
2. 线性函数:线性函数z可以表示为:z = w^T * x + b,其中w是特征权重向量,b是偏置项。
3. 逻辑函数:逻辑函数g(z)将线性函数的结果映射到一个概率值,它的定义为:g(z) = 1 / (1 + e^(-z))。逻辑函数具有S形曲线,当z趋近于正无穷时,g(z)趋近于1;当z趋近于负无穷时,g(z)趋近于0。
4. 模型训练:通过最大似然估计或梯度下降等方法,我们可以得到最优的特征权重向量w和偏置项b,使得假设函数h(x)能够最好地拟合训练数据。
5. 模型预测:对于一个新的输入特征x,我们可以使用训练得到的特征权重向量w和偏置项b,计算出假设函数h(x)的值。如果h(x)大于等于0.5,则预测为正类;如果h(x)小于0.5,则预测为负类。
阅读全文