kmeans聚类算法核心代码python
时间: 2023-11-21 12:07:00 浏览: 71
以下是KMeans聚类算法的核心代码示例,使用Python的scikit-learn库实现:
```python
from sklearn.cluster import KMeans
# 创建KMeans对象,设置聚类数为3
kmeans = KMeans(n_clusters=3)
# 训练模型并进行聚类
X = [[1, 2], [1, 4], [1, 0],
[4, 2], [4, 4], [4, 0]]
kmeans.fit(X)
# 输出聚类结果
print(kmeans.labels_)
```
上述代码中,首先导入了scikit-learn库中的KMeans类。然后创建了一个KMeans对象,将聚类数设置为3。接着,使用fit()方法对数据进行训练,并使用labels_属性获取聚类结果。
相关问题
kmeans聚类算法python代码
当然可以回答,以下是Kmeans聚类算法的Python代码示例:
```python
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
# 生成数据集
X, y = make_blobs(n_samples=1000, centers=4, random_state=0)
# KMeans 聚类
kmeans = KMeans(n_clusters=4, random_state=0).fit(X)
# 输出聚类结果
print(kmeans.labels_)
```
这段代码演示了如何使用`sklearn`库中的`KMeans`类进行聚类。在这个例子中,我们生成了一个包含 1000 个样本和 4 个簇的数据集,并使用 KMeans 算法将数据分为 4 个簇。
pso优化kmeans聚类算法python代码
PSO优化KMeans聚类算法是一种基于粒子群优化算法改进的聚类算法,它通过优化KMeans聚类算法中的初始质心来提高聚类效果。以下是Python实现代码:
```python
import numpy as np
from sklearn.cluster import KMeans
class PSO_KMeans():
def __init__(self, n_clusters, n_particles, n_iterations):
self.n_clusters = n_clusters
self.n_particles = n_particles
self.n_iterations = n_iterations
def fit(self, X):
self.swarm_pos = np.random.uniform(low=X.min(axis=0), high=X.max(axis=0), size=(self.n_particles, X.shape, self.n_clusters))
self.swarm_vel = np.zeros_like(self.swarm_pos)
for i in range(self.n_iterations):
# 计算每个粒子的适应度值
fitness = np.zeros((self.n_particles,))
for j in range(self.n_particles):
kmeans = KMeans(n_clusters=self.n_clusters, init=self.swarm_pos[j])
kmeans.fit(X)
fitness[j] = -kmeans.score(X)
# 更新全局最优解和局部最优解
if i == 0:
self.global_best_pos = self.swarm_pos[np.argmin(fitness)]
self.global_best_fitness = np.min(fitness)
self.local_best_pos = self.swarm_pos.copy()
self.local_best_fitness = fitness.copy()
else:
mask = fitness < self.local_best_fitness
self.local_best_pos[mask] = self.swarm_pos[mask]
self.local_best_fitness[mask] = fitness[mask]
if np.min(fitness) < self.global_best_fitness:
self.global_best_pos = self.swarm_pos[np.argmin(fitness)]
self.global_best_fitness = np.min(fitness)
# 更新粒子速度和位置
r1, r2 = np.random.rand(self.n_particles, X.shape, self.n_clusters), np.random.rand(self.n_particles, X.shape, self.n_clusters)
self.swarm_vel = 0.5 * self.swarm_vel + 1 * r1 * (self.local_best_pos - self.swarm_pos) + 1 * r2 * (self.global_best_pos - self.swarm_pos)
self.swarm_pos += self.swarm_vel
# 训练完毕后,使用全局最优解进行聚类
kmeans = KMeans(n_clusters=self.n_clusters, init=self.global_best_pos)
kmeans.fit(X)
self.labels_ = kmeans.labels_
self.cluster_centers_ = kmeans.cluster_centers_
pso_kmeans = PSO_KMeans(n_clusters=3, n_particles=50, n_iterations=100)
pso_kmeans.fit(X)
labels = pso_kmeans.labels_
cluster_centers = pso_kmeans.cluster_centers_
```