for(int i = 0; i < heatmaps.size[1] - 1; i ++) // resize cost 29 ms { cv::Mat heatMap(heatmaps.size[2], heatmaps.size[3], CV_32F, reinterpret_cast<float*>(const_cast<uchar*>(heatmaps.ptr(0, i)))); // heatMap.data = heatmaps.ptr(0, i); if (this->upsample_ratio != 1) { // cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_CUBIC); // cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_AREA); cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_LINEAR); } heatmaps_channels[i] = heatMap; } 这段C++代码的详细解释
时间: 2024-04-18 21:30:43 浏览: 156
这段C++代码是一个for循环,用于对一个名为`heatmaps`的多维数组进行处理。下面是代码的详细解释:
1. `for(int i = 0; i < heatmaps.size[1] - 1; i++)`: 这是一个循环,从0开始迭代到`heatmaps`数组的第一维度大小减1。`heatmaps.size[1]`表示数组的第一维度大小。
2. `cv::Mat heatMap(heatmaps.size[2], heatmaps.size[3], CV_32F, reinterpret_cast<float*>(const_cast<uchar*>(heatmaps.ptr(0, i))));`: 这行代码定义了一个名为`heatMap`的`cv::Mat`对象。它使用了`heatmaps`数组中的数据来初始化,具体是通过`heatmaps.ptr(0, i)`获取指向数组中特定位置的指针,然后使用`reinterpret_cast<float*>`将指针转换为`float*`类型,最后通过`cv::Mat`构造函数创建一个`CV_32F`类型的矩阵。
3. `if (this->upsample_ratio != 1)`: 这是一个条件判断语句,检查变量`this->upsample_ratio`是否不等于1。
4. `cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_LINEAR);`: 这行代码使用了OpenCV的resize函数对矩阵`heatMap`进行调整大小操作。调整大小的目标大小由`cv::Size(0, 0)`表示,表示将根据输入的`this->upsample_ratio`参数对图像进行放大或缩小。`cv::INTER_LINEAR`是插值方法,表示使用线性插值算法进行调整大小操作。
5. `heatmaps_channels[i] = heatMap;`: 这行代码将处理后的矩阵`heatMap`赋值给名为`heatmaps_channels`的数组的第`i`个元素。
这段代码的作用是遍历`heatmaps`数组的第一维度,并对每个元素进行调整大小操作,然后将调整后的结果存储在名为`heatmaps_channels`的数组中。
阅读全文