transforms.Resize(size=(in_size, in_size), interpolation=transforms.InterpolationMode.BICUBIC)

时间: 2024-04-14 18:31:10 浏览: 22
`transforms.Resize` 是 PyTorch 中的一个函数,用于调整图像的大小。它接受一个参数 `size`,该参数是一个元组,表示目标图像的大小。在这个例子中,`size=(in_size, in_size)` 表示目标图像将被调整为一个正方形,边长为 `in_size`。同时,函数还接受一个可选参数 `interpolation`,用于指定调整大小时使用的插值方法。在这里,`transforms.InterpolationMode.BICUBIC` 表示使用双三次插值方法进行调整大小操作。
相关问题

torchvision.transforms.Resize(image_shape)

torchvision.transforms.Resize(image_shape)是一个用于调整图像大小的函数。它是PyTorch中torchvision库中的一个变换函数。这函数可以用于对图像进行缩,使其具有指定的形状。 具体来说,这个函数接受一个参数image_shape,它表示目标图像的形状。image_shape可以是一个整数,表示将图像的宽度和高度调整为相同的值,也可以是一个元组或列表,表示将图像的宽度和高度调整为指定的值。 当调用torchvision.transforms.Resize(image_shape)时,它会返回一个可应用于图像的变换函数。这个函数可以通过调用transform(image)来应用到输入的图像上,其中image是一个PIL图像对象。 使用torchvision.transforms.Resize可以方便地对输入的图像进行大小调整,以满足模型或任务的要求。

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

训练精度差可能是由于数据集太小,或者模型的训练过程不够充分。可以尝试以下几个方法: 1. 增加数据集:可以通过数据增强的方法来扩充数据集,比如随机裁剪、翻转、旋转等等。 2. 调整超参数:可以尝试调整学习率、优化器、dropout等超参数来提高模型的性能。 3. 调整网络结构:可以尝试增加卷积层、全连接层,或者使用更深的网络结构来提高模型的性能。 以下是代码的修改建议: 1. 增加数据增强:可以使用 torchvision.transforms 对图像进行随机裁剪、翻转等操作,来扩充数据集。 2. 调整学习率和优化器:可以尝试使用较小的学习率,并选择合适的优化器,比如 Adam。 3. 增加全连接层:可以在模型中增加一个全连接层来提高模型性能。 4. 增加正则化:可以使用 L2 正则化来防止过拟合。 修改后的代码如下: ``` import torch.nn.functional as F import torchvision.transforms as transforms class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5, 1024) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(1024, 141) # 数据增强 self.transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) def forward(self, x): x = self.conv1_1(x) x = self.bn1_1(x) x = self.relu1_1(x) x = self.pool1(x) x = self.conv2_1(x) x = self.bn2_1(x) x = self.relu2_1(x) x = self.pool2(x) x = self.conv3_1(x) x = self.bn3_1(x) x = self.relu3_1(x) x = self.pool3(x) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu4_1(x) x = self.conv4_2(x) x = self.bn4_2(x) x = self.relu4_2(x) x = self.pool4(x) x = self.conv5_1(x) x = self.bn5_1(x) x = self.relu5_1(x) x = self.conv5_2(x) x = self.bn5_2(x) x = self.relu5_2(x) x = self.pool5(x) x = x.view(-1, 512*5*5) x = self.dropout1(x) x = self.fc1(x) x = self.relu6(x) x = self.dropout2(x) x = self.fc2(x) return x ``` 在训练时,可以使用如下代码来进行数据增强: ``` trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=model.transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) ```

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵

最新推荐

recommend-type

STC89C51 简单时钟

STC89C51 简单时钟,叫你从基础开始学习单片机,
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?

![MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?](https://www.finebi.com/wp-content/uploads/2019/11/FineBI%E8%A1%8C%E4%B8%9A%E9%A9%BE%E9%A9%B6%E8%88%B1-1024x510.png) # 1. MATLAB归一化概述 归一化是一种数据预处理技术,用于将数据缩放到特定范围内,从而消除不同特征之间的尺度差异。在MATLAB中,有各种归一化方法可用于不同类型的数据和应用程序。 归一化的主要目的是: - 提高模型的训练效率和准确性,通过消除特征之间的尺度差异,使模型能够更有效地学习
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

Linux系统常用操作命令大全手册

附件是Linux系统常用操作命令大全手册,是 markdown格式,其中覆盖了Linux系统管理、文件操作、网络配置等多个方面,都是日常工作中非常常用的命令,欢迎大家下载学习使用!
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB归一化实战指南:从零到一,轻松提升模型性能

![MATLAB归一化实战指南:从零到一,轻松提升模型性能](https://pic1.zhimg.com/80/v2-fd366800ef0bdf29c804ce25c0276778_1440w.webp) # 1. 归一化的理论基础** 归一化是一种数据预处理技术,旨在将数据缩放到特定范围内,通常是[0, 1]或[-1, 1]。通过归一化,可以消除数据量纲上的差异,使不同特征具有可比性,从而提高机器学习模型的性能。 归一化背后的基本原理是,在训练机器学习模型时,模型的学习过程会受到数据分布的影响。如果数据分布不均匀,某些特征可能具有较大的值域,而其他特征的值域较小。这会导致模型在训练过
recommend-type

File path = new File(ResourceUtils.getURL("classpath:static").getPath());

这段代码的作用是获取项目中静态资源文件夹的路径,其中`ResourceUtils.getURL("classpath:static")`表示获取`classpath`下的`static`文件夹的URL,`getPath()`方法则将URL转换成文件路径。最终得到的`File`对象可以用于读取或写入静态资源文件。需要注意的是,这段代码只适用于Spring Boot项目,因为它使用了Spring的`ResourceUtils`类。如果不是Spring Boot项目,可能需要使用其他方式获取静态资源文件夹的路径。
recommend-type

Java加密技术

加密解密,曾经是我一个毕业设计的重要组件。在工作了多年以后回想当时那个加密、 解密算法,实在是太单纯了。 言归正传,这里我们主要描述Java已经实现的一些加密解密算法,最后介绍数字证书。 如基本的单向加密算法: ● BASE64 严格地说,属于编码格式,而非加密算法 ● MD5(Message Digest algorithm 5,信息摘要算法) ● SHA(Secure Hash Algorithm,安全散列算法) ● HMAC(Hash Message AuthenticationCode,散列消息鉴别码) 复杂的对称加密(DES、PBE)、非对称加密算法: ● DES(Data Encryption Standard,数据加密算法) ● PBE(Password-based encryption,基于密码验证) ● RSA(算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman) ● DH(Diffie-Hellman算法,密钥一致协议) ● DSA(Digital Signature Algorithm,数字签名) ● ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学) 本篇内容简要介绍 BASE64、MD5、SHA、HMAC 几种方法。 MD5、SHA、HMAC 这三种加密算法,可谓是非可逆加密,就是不可解密的加密方法。我 们通常只把他们作为加密的基础。单纯的以上三种的加密并不可靠。 BASE64 按照 RFC2045 的定义,Base64 被定义为:Base64 内容传送编码被设计用来把任意序列 的 8 位字节描述为一种不易被人直接识别的形式。(The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable.) 常见于邮件、http 加密,截取 http 信息,你就会发现登录操作的用户名、密码字段通 过 BASE64 加密的。 通过 java 代码实现如下:
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩