MATLAB 用F2T画出s(f)=j*2*Π*f/(1+j*2*Π*f)傅里叶反变换
时间: 2023-12-05 12:05:12 浏览: 116
基于MATLAB实现了极坐标下的傅里叶变换,对一个给定 n×n 的二维信号,其计算复杂度等价于笛卡尔坐标下的2D-FFT
5星 · 资源好评率100%
以下是MATLAB用F2T画出s(f)=j*2*Π*f/(1+j*2*Π*f)傅里叶反变换的步骤:
1.定义函数s(f):
```matlab
syms f;
s(f) = j*2*pi*f / (1+j*2*pi*f);
```
2.定义频率范围和采样点数:
```matlab
fmin = -10; % 最小频率
fmax = 10; % 最大频率
N = 1000; % 采样点数
```
3.生成频率向量:
```matlab
df = (fmax-fmin)/N; % 频率步长
f = fmin:df:fmax-df; % 频率向量
```
4.计算s(f)在频率向量上的取值:
```matlab
S = subs(s(f));
```
5.进行傅里叶反变换:
```matlab
tmin = -5; % 最小时间
tmax = 5; % 最大时间
dt = (tmax-tmin)/N; % 时间步长
t = tmin:dt:tmax-dt; % 时间向量
x = ifourier(S, f, t);
```
6.绘制反变换后的信号:
```matlab
plot(t, x);
xlabel('Time (s)');
ylabel('Amplitude');
title('Inverse Fourier Transform of s(f)');
```
阅读全文