如果使用dp神经网络,怎么写代码

时间: 2023-03-08 07:17:45 浏览: 49
使用深度学习神经网络来编写代码是一个相对复杂的过程,但也很有趣。首先,你需要定义你的神经网络,并实现一个损失函数,以及你想要使用的梯度下降算法。然后,你需要初始化神经网络中的参数,然后就可以开始训练。在训练过程中,你将不断迭代训练数据,并不断优化模型参数,以达到最佳性能。最后,你可以使用测试数据来评估模型的性能,并将模型用于实际应用。
相关问题

pytorch的DP神经网络代码

下面是一个简单的 PyTorch 分布式数据并行神经网络代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.distributed as dist import torchvision.datasets as datasets import torchvision.transforms as transforms # 初始化分布式进程 dist.init_process_group(backend='nccl', init_method='env://') # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.fc1 = nn.Linear(256 * 4 * 4, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv3(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 256 * 4 * 4) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义训练函数 def train(rank, world_size): # 加载数据 train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, num_replicas=world_size, rank=rank) train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, sampler=train_sampler) # 初始化模型、优化器和损失函数 model = Net() model = nn.parallel.DistributedDataParallel(model, device_ids=[rank]) optimizer = optim.SGD(model.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() # 训练循环 for epoch in range(10): train_loss = 0.0 for data, target in train_loader: optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() * data.size(0) train_loss /= len(train_loader.dataset) if rank == 0: print('Epoch: {}, Train Loss: {:.6f}'.format(epoch+1, train_loss)) # 获取本地进程信息 rank = dist.get_rank() world_size = dist.get_world_size() # 开始训练 train(rank, world_size) # 清理分布式进程 dist.destroy_process_group() ``` 在这个示例中,我们定义了一个简单的卷积神经网络模型 `Net`,并在 `train` 函数中使用 PyTorch 的分布式数据并行来训练模型。我们使用 CIFAR10 数据集进行训练,并使用 SGD 优化器和交叉熵损失函数。我们使用 `DistributedSampler` 和 `DataLoader` 来加载数据,并使用 `DistributedDataParallel` 来并行化模型。最后,我们在每个 epoch 结束时打印训练损失,并在进程 0 上输出。

用dp神经网络写一段4输入两输出的matlab代码

下面是一个简单的使用深度前馈神经网络(Deep Feedforward Neural Network)实现4输入2输出的Matlab代码示例: ```matlab % 导入数据 data = readtable('input_data.csv'); data = table2array(data(:, 2:end)); input_data = data(:, 1:4); output_data = data(:, 5:6); % 构造深度前馈神经网络模型 num_inputs = 4; num_hidden = 16; num_outputs = 2; net = feedforwardnet(num_hidden); net.layers{1}.transferFcn = 'tansig'; net.layers{2}.transferFcn = 'tansig'; net.performFcn = 'mse'; net = train(net, input_data', output_data'); % 对测试数据进行预测 test_data = [0.2, 0.3, 0.4, 0.5]; test_output = net(test_data'); % 显示预测结果 disp(['Predicted output: ', num2str(test_output)]); ``` 这个程序首先导入数据,然后将数据集分为输入和输出两个部分。接着,构造了一个包含一个隐层的深度前馈神经网络模型,并使用均方误差(MSE)作为损失函数进行训练。最后,使用训练好的模型对一个测试数据进行预测,并将预测结果输出到控制台中。 请注意,这只是一个简单的示例,实际应用中需要根据具体问题进行修改和优化。

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

class HorNet(nn.Module): # HorNet # hornet by iscyy/yoloair def __init__(self, index, in_chans, depths, dim_base, drop_path_rate=0.,layer_scale_init_value=1e-6, gnconv=[ partial(gnconv, order=2, s=1.0/3.0), partial(gnconv, order=3, s=1.0/3.0), partial(gnconv, order=4, s=1.0/3.0), partial(gnconv, order=5, s=1.0/3.0), # GlobalLocalFilter ], ): super().__init__() dims = [dim_base, dim_base * 2, dim_base * 4, dim_base * 8] self.index = index self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers hornet by iscyy/air stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), HorLayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( HorLayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiples bind residual blocks dummy dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] if not isinstance(gnconv, list): gnconv = [gnconv, gnconv, gnconv, gnconv] else: gnconv = gnconv assert len(gnconv) == 4 cur = 0 for i in range(4): stage = nn.Sequential( *[HorBlock(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value, gnconv=gnconv[i]) for j in range(depths[i])]# hornet by iscyy/air ) self.stages.append(stage) cur += depths[i] self.apply(self._init_weights)

def forward(self, data, org_edge_index): x = data.clone().detach() edge_index_sets = self.edge_index_sets device = data.device batch_num, node_num, all_feature = x.shape x = x.view(-1, all_feature).contiguous() gcn_outs = [] for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out

最新推荐

recommend-type

安装NumPy教程-详细版

附件是安装NumPy教程_详细版,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

语音端点检测及其在Matlab中的实现.zip

语音端点检测及其在Matlab中的实现.zip
recommend-type

C#文档打印程序Demo

使用C#完成一般文档的打印,带有页眉,页脚文档打印,表格打印,打印预览等
recommend-type

DirectX修复工具-4-194985.zip

directx修复工具 DirectX修复工具(DirectX repair)是系统DirectX组件修复工具,DirectX修复工具主要是用于检测当前系统的DirectX状态,若发现异常情况就可以马上进行修复,非常快捷,使用效果也非常好。
recommend-type

Python手动实现人脸识别算法

人脸识别的主要算法 其核心算法是 欧式距离算法使用该算法计算两张脸的面部特征差异,一般在0.6 以下都可以被认为是同一张脸 人脸识别的主要步骤 1 获得人脸图片 2 将人脸图片转为128D的矩阵(这个也就是人脸特征的一种数字化表现) 3 保存人脸128D的特征到文件中 4 获取其他人脸转为128D特征通过欧式距离算法与我们保存的特征对比,如果差距在0.6以下就说明两张脸差距比较小
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。