dp[i][j] = max(dp[i][j], dp[i-1][j-k] + benefit(i, k))
时间: 2024-01-06 20:03:36 浏览: 80
这是一个动态规划的状态转移方程,其中dp[i][j]表示前i个物品在背包容量为j的情况下的最大价值,benefit(i, k)表示第i个物品选k个时的总价值。状态转移方程的意义是,对于第i个物品,考虑选0个到选j个的所有情况,选择能获得最大价值的方案。具体地,dp[i-1][j-k]表示前i-1个物品在背包容量为j-k的情况下的最大价值,加上benefit(i, k)即为前i个物品在背包容量为j时的总价值。最后从所有的方案中选取最大值作为dp[i][j]的值。
相关问题
def lcs(s1, s2): m, n = len(s1), len(s2) dp = [[0] * (n+1) for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if s1[i-1] == s2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) res = "" i, j = m, n while i > 0 and j > 0: if s1[i-1] == s2[j-1]: res = s1[i-1] + res i -= 1 j -= 1 elif dp[i-1][j] > dp[i][j-1]: i -= 1 else: j -= 1 return res, dp[m][n]运行不出来
这段代码如果运行不出来,很可能是因为缺少函数调用。你需要在代码的下面添加调用函数的语句,例如:
```python
s1 = "ABCD"
s2 = "EACB"
print(lcs(s1, s2)) # 输出:('AC', 2)
```
这里将两个字符串s1和s2作为参数传递给lcs函数,并将结果打印输出。你可以根据自己的需要修改这些参数。
#include<stdio.h> int map[11][11], dp[11][11]; int main() { int n, i, j, num = 0, res = 0; scanf("%d", &n); for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) { map[i][j] = 0; dp[i][j] = 0; } while (map[i][j] || i || j) { scanf("%d%d", &i, &j); scanf("%d", &map[i][j]); dp[i][j] = map[i][j]; } for (int i = 2; i <= n; i++) { dp[1][i] += dp[1][i - 1]; dp[i][1] += dp[i - 1][1]; } for (int i = 2; i <= n; i++) for (int j = 2; j <= n; j++) if (dp[i - 1][j] != 0 || dp[i][j - 1] != 0) if (dp[i - 1][j] > dp[i][j - 1]) dp[i][j] += dp[i - 1][j]; else dp[i][j] += dp[i][j - 1]; num += dp[n][n]; res = num; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (dp[i][j] == num) { if (map[i][j] + dp[i - 1][j] == num || map[i][j] + dp[i][j - 1] == num) { num -= map[i][j]; map[i][j] = 0; i = 1; j = 0; if (num == 0) break; } } } if (num == 0) break; } for (int i = 2; i <= n; i++) for (int j = 2; j <= n; j++) if (map[i - 1][j] != 0 || map[i][j - 1] != 0) if (map[i - 1][j] > map[i][j - 1]) map[i][j] += map[i - 1][j]; else map[i][j] += map[i][j - 1]; res += map[n][n]; printf("%d", res); return 0; }优化
可以将一些重复的代码封装成函数,以提高代码可读性和可维护性。例如,可以将计算最大价值和删除路径上某个点的操作封装成函数。
此外,可以使用更具有表达性的变量名,以便于理解代码含义。
下面是一个可能的优化版本:
```c
#include <stdio.h>
#define MAX_N 11
int map[MAX_N][MAX_N], dp[MAX_N][MAX_N];
int read_input(int n) {
int i, j;
while (scanf("%d%d", &i, &j) == 2) {
scanf("%d", &map[i][j]);
dp[i][j] = map[i][j];
}
return 0;
}
int compute_max_value(int n) {
int i, j;
for (i = 2; i <= n; i++) {
dp[1][i] += dp[1][i - 1];
dp[i][1] += dp[i - 1][1];
}
for (i = 2; i <= n; i++) {
for (j = 2; j <= n; j++) {
if (dp[i - 1][j] != 0 || dp[i][j - 1] != 0) {
dp[i][j] += dp[i - 1][j] > dp[i][j - 1] ? dp[i - 1][j] : dp[i][j - 1];
}
}
}
return dp[n][n];
}
int delete_path(int n, int max_value) {
int i, j;
int current_value = max_value;
while (current_value > 0) {
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {
if (dp[i][j] == current_value) {
if (map[i][j] + dp[i - 1][j] == current_value || map[i][j] + dp[i][j - 1] == current_value) {
current_value -= map[i][j];
map[i][j] = 0;
i = 1;
j = 0;
if (current_value == 0) {
return 0;
}
}
}
}
}
current_value--;
}
return 0;
}
int compute_max_path(int n) {
int i, j;
for (i = 2; i <= n; i++) {
for (j = 2; j <= n; j++) {
if (map[i - 1][j] != 0 || map[i][j - 1] != 0) {
map[i][j] += map[i - 1][j] > map[i][j - 1] ? map[i - 1][j] : map[i][j - 1];
}
}
}
return map[n][n];
}
int main() {
int n, max_value, max_path;
scanf("%d", &n);
read_input(n);
max_value = compute_max_value(n);
delete_path(n, max_value);
max_path = compute_max_path(n);
printf("%d", max_value + max_path);
return 0;
}
```
阅读全文