truncatedSVD
时间: 2023-09-26 18:04:29 浏览: 325
SVD实现代码
5星 · 资源好评率100%
TruncatedSVD是一种用于降维的方法,它可以通过截断奇异值分解(SVD)来将高维数据转换为低维表示。在使用TruncatedSVD时,我们可以指定n_components参数来设定降维后的目标维度。TruncatedSVD会舍弃超过目标维度的部分,从而保留数据中最重要的特征维度。
具体来说,TruncatedSVD的原理是通过SVD将数据矩阵分解为三个矩阵的乘积:U、S和V^T。其中,U是原始数据的左奇异矩阵,S是对角矩阵,包含了奇异值(singular values),V^T是原始数据的右奇异矩阵的转置。TruncatedSVD会将奇异值按照大小进行排序,并截断保留前n个奇异值及对应的列向量,从而得到降维后的数据表示。
使用TruncatedSVD可以实现降低数据维度的目的,并且舍弃不需要的数据,从而提升计算性能。这在处理大量数据时非常有用。 TruncatedSVD在sklearn库中有相应的实现,通过设置n_components参数可以直接实现降维操作。 参考文章中提供了更多关于奇异值分解和TruncatedSVD的原理和应用的信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文