train_data = np.hstack((np.ones((self.data.shape[0], 1)), self.data)) # 每个样本的特征最前面都插入1维阈值 1(偏置) train_label = self.label.reshape(-1).astype(int) - 1 # 类别标签从1-3变为0-2,便于转成onw-hot矩阵进行计算 # print(train_label) train_y = np.eye(3)[train_label] # one-hot向量矩阵 return train_data, train_y
时间: 2024-02-22 22:01:07 浏览: 122
这段代码的作用是对特征集和标签进行进一步处理,为后续的机器学习算法做准备。首先,在特征集中的每个样本的前面插入一维阈值1(偏置),这样可以方便地使用矩阵乘法计算权重。其次,将标签从原来的1-3转换为0-2,这样可以方便地将其转换为one-hot向量矩阵,以进行分类任务。最后,使用numpy库中的eye()函数将标签转换为one-hot向量矩阵,并将处理后的特征集和标签分别返回给train_data和train_y。
相关问题
class Client(object): def __init__(self, conf, public_key, weights, data_x, data_y): self.conf = conf self.public_key = public_key self.local_model = models.LR_Model(public_key=self.public_key, w=weights, encrypted=True) #print(type(self.local_model.encrypt_weights)) self.data_x = data_x self.data_y = data_y #print(self.data_x.shape, self.data_y.shape) def local_train(self, weights): original_w = weights self.local_model.set_encrypt_weights(weights) neg_one = self.public_key.encrypt(-1) for e in range(self.conf["local_epochs"]): print("start epoch ", e) #if e > 0 and e%2 == 0: # print("re encrypt") # self.local_model.encrypt_weights = Server.re_encrypt(self.local_model.encrypt_weights) idx = np.arange(self.data_x.shape[0]) batch_idx = np.random.choice(idx, self.conf['batch_size'], replace=False) #print(batch_idx) x = self.data_x[batch_idx] x = np.concatenate((x, np.ones((x.shape[0], 1))), axis=1) y = self.data_y[batch_idx].reshape((-1, 1)) #print((0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one).shape) #print(x.transpose().shape) #assert(False) batch_encrypted_grad = x.transpose() * (0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one) encrypted_grad = batch_encrypted_grad.sum(axis=1) / y.shape[0] for j in range(len(self.local_model.encrypt_weights)): self.local_model.encrypt_weights[j] -= self.conf["lr"] * encrypted_grad[j] weight_accumulators = [] #print(models.decrypt_vector(Server.private_key, weights)) for j in range(len(self.local_model.encrypt_weights)): weight_accumulators.append(self.local_model.encrypt_weights[j] - original_w[j]) return weight_accumulators
这段代码看起来是一个客户端的类实现,其中包含了初始化函数和本地训练函数。初始化函数接受一些参数,包括全局配置conf、公钥public_key、权重weights、数据x和数据y。在初始化函数中,使用公钥public_key和权重weights创建一个加密的逻辑回归模型local_model,并将数据x和y保存在类实例中。
本地训练函数local_train接受一个权重参数weights,并将其设置为local_model的加密权重。在函数中,使用随机梯度下降算法对模型进行训练,其中每次迭代从数据集中随机选择一个batch_size大小的样本进行训练。在计算梯度时,使用加密权重对样本进行预测,并使用公钥对-1进行加密,然后计算损失函数的梯度并进行加密。最后,使用学习率lr对加密权重进行更新,并将更新的权重返回给调用者。
需要注意的是,本地训练函数中使用了加密的权重和加密的梯度进行计算,以确保数据隐私不会被泄露。
def local_train(self, weights): original_w = weights self.local_model.set_encrypt_weights(weights) neg_one = self.public_key.encrypt(-1) for e in range(self.conf["local_epochs"]): print("start epoch ", e) #if e > 0 and e%2 == 0: # print("re encrypt") # self.local_model.encrypt_weights = Server.re_encrypt(self.local_model.encrypt_weights) idx = np.arange(self.data_x.shape[0]) batch_idx = np.random.choice(idx, self.conf['batch_size'], replace=False) #print(batch_idx) x = self.data_x[batch_idx] x = np.concatenate((x, np.ones((x.shape[0], 1))), axis=1) y = self.data_y[batch_idx].reshape((-1, 1)) #print((0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one).shape) #print(x.transpose().shape) #assert(False) batch_encrypted_grad = x.transpose() * (0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one) encrypted_grad = batch_encrypted_grad.sum(axis=1) / y.shape[0] for j in range(len(self.local_model.encrypt_weights)): self.local_model.encrypt_weights[j] -= self.conf["lr"] * encrypted_grad[j] weight_accumulators = [] #print(models.decrypt_vector(Server.private_key, weights)) for j in range(len(self.local_model.encrypt_weights)): weight_accumulators.append(self.local_model.encrypt_weights[j] - original_w[j]) return weight_accumulators
这段代码是联邦学习中的一个客户端的本地训练代码实现。该代码接收一个初始的模型参数weights作为输入,并使用该参数进行本地训练。在训练过程中,代码使用随机梯度下降算法对模型进行迭代更新,每次更新的步长由学习率lr决定。训练的过程中,代码每次从数据集中随机选择batch_size个样本进行训练。其中,data_x和data_y分别是客户端持有的训练数据的特征和标签。训练完成后,代码返回模型参数的差异值,即本次训练后模型参数与初始参数之间的差异。
需要注意的是,该代码使用了加密技术对模型参数进行保护,其中local_model.encrypt_weights是加密后的模型参数,Server.private_key是服务器的私钥。代码中的neg_one是对-1进行加密的结果,用于计算梯度。
阅读全文