解释这段代码def get_measures_gridloo(label, score): label = np.array(label) score = np.array(score) N = len(label) TP = sum((label == 1) & (score == 1)) TN = sum((label == 0) & (score == 0)) FP = sum((label == 0) & (score == 1)) FN = sum((label == 1) & (score == 0)) # init all measures to nan measures = {measure: float("nan") for measure in ("Sen", "Spe", "Acc", "PPV", "NPV", "MCC","AUC")} measures["TP"] = TP measures["TN"] = TN measures["FP"] = FP measures["FN"] = FN S = (TP + FN) / N P = (TP + FP) / N if (TP + FN) > 0: #recall measures["Sen"] = round(TP/(TP+FN), 4) if (TN + FP) > 0: measures["Spe"] = round(TN/(TN+FP), 4) if (TP + FP + FN + TN) > 0: measures["Acc"] = round((TP+TN)/(TP+FP+FN+TN), 4) if (TP + FP) > 0: #precision measures["PPV"] = round(TP/(TP+FP), 4) if (TN + FN) > 0: measures["NPV"] = round(TN/(TN+FN), 4) if (2*TP+FP+FN) > 0: measures["F1"] = round((2*TP)/(2*TP+FP+FN), 4) measures["AUC"]= roc_auc_score(label, score) return pd.DataFrame([measures], columns=["TP", "TN", "FP", "FN", "Sen", "Spe", "Acc", "PPV", "NPV", "F1","AUC"])
时间: 2024-04-19 13:30:13 浏览: 151
这段代码是一个计算分类模型评估指标的函数。下面是每个变量的解释和计算过程:
- `label`:真实的分类标签数据
- `score`:模型预测的分类得分数据
接下来,代码将`label`和`score`转换为NumPy数组类型。
然后,代码计算以下指标:
- `N`:样本数量,即`label`的长度
- `TP`:真正例数量,即预测为正例且真实为正例的样本数量
- `TN`:真反例数量,即预测为反例且真实为反例的样本数量
- `FP`:假正例数量,即预测为正例但真实为反例的样本数量
- `FN`:假反例数量,即预测为反例但真实为正例的样本数量
然后,代码初始化一个字典`measures`,用于存储各个评估指标,并将其初始值设置为`nan`。
接下来,将计算得到的TP、TN、FP、FN的值存储到`measures`字典中。
接着,计算以下指标:
- `S`:敏感性(又称召回率)= TP / (TP + FN)
- `P`:精确度(又称准确度)= TP / (TP + FP)
如果TP + FN大于0,则将敏感性存储在`measures["Sen"]`中。
如果TN + FP大于0,则将特异性存储在`measures["Spe"]`中。
如果TP + FP + FN + TN大于0,则将准确率存储在`measures["Acc"]`中。
如果TP + FP大于0,则将精确度存储在`measures["PPV"]`中。
如果TN + FN大于0,则将负预测值存储在`measures["NPV"]`中。
如果2 * TP + FP + FN大于0,则将F1分数存储在`measures["F1"]`中。
最后,计算AUC(曲线下面积)得分,并将所有指标存储在一个DataFrame中返回。
阅读全文