Error(s) in loading state_dict for LeNet: size mismatch for conv1.weight: copying a param with shape torch.Size([10, 1, 5, 5]) from checkpoint, the shape in current model is torch.Size([6, 1, 5, 5]). size mismatch for conv1.bias: copying a param with shape torch.Size([10]) from checkpoint, the shape in current model is torch.Size([6]). size mismatch for conv2.weight: copying a param with shape torch.Size([20, 10, 5, 5]) from checkpoint, the shape in current model is torch.Size([16, 6, 5, 5]). size mismatch for conv2.bias: copying a param with shape torch.Size([20]) from checkpoint, the shape in current model is torch.Size([16]). size mismatch for fc1.weight: copying a param with shape torch.Size([50, 320]) from checkpoint, the shape in current model is torch.Size([120, 256]). size mismatch for fc1.bias: copying a param with shape torch.Size([50]) from checkpoint, the shape in current model is torch.Size([120]). size mismatch for fc2.weight: copying a param with shape torch.Size([10, 50]) from checkpoint, the shape in current model is torch.Size([84, 120]). size mismatch for fc2.bias: copying a param with shape torch.Size([10]) from checkpoint, the shape in current model is torch.Size([84]).

时间: 2024-02-02 19:15:29 浏览: 34
这个错误信息提示我们在加载预训练模型的权重时,发现模型中的部分参数形状与当前创建的模型不匹配,具体来说,就是: - `conv1.weight`的形状应该为`(6, 1, 5, 5)`,但是预训练模型中的形状为`(10, 1, 5, 5)`; - `conv1.bias`的形状应该为`(6,)`,但是预训练模型中的形状为`(10,)`; - `conv2.weight`的形状应该为`(16, 6, 5, 5)`,但是预训练模型中的形状为`(20, 10, 5, 5)`; - `conv2.bias`的形状应该为`(16,)`,但是预训练模型中的形状为`(20,)`; - `fc1.weight`的形状应该为`(120, 256)`,但是预训练模型中的形状为`(50, 320)`; - `fc1.bias`的形状应该为`(120,)`,但是预训练模型中的形状为`(50,)`; - `fc2.weight`的形状应该为`(84, 120)`,但是预训练模型中的形状为`(10, 50)`; - `fc2.bias`的形状应该为`(84,)`,但是预训练模型中的形状为`(10,)`。 这个问题通常是由于预训练模型的结构与当前创建的模型结构不一致导致的。解决方法是在当前模型中手动修改这些参数的形状,使其与预训练模型的结构一致。
相关问题

RuntimeError: Error(s) in loading state_dict for XceptionRGBD: size mismatch for conv1.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 4, 3, 3])

这个错误是由于你的当前模型和加载的预训练模型中的某些参数形状不匹配,具体地说是conv1.weight的形状不匹配。在预训练模型中,conv1.weight的形状是[32, 3, 3, 3],而在你的当前模型中,它的形状是[32, 4, 3, 3]。这意味着你的当前模型中有4个输入通道,但是预训练模型中只有3个输入通道。 解决这个问题的方法是,你需要修改你的当前模型,使它与预训练模型的形状匹配。你可以通过在conv1.weight中添加一个额外的通道来实现这一点。具体来说,你可以执行以下操作: ```python import torch from torchvision.models import xception # 加载预训练模型 pretrained_model = xception(pretrained=True) # 创建一个新的模型 model = xception() # 将预训练模型的参数复制到新模型中 state_dict = pretrained_model.state_dict() model_dict = model.state_dict() for k, v in state_dict.items(): if k in model_dict: if v.shape != model_dict[k].shape: # 修改conv1.weight的形状 if k == 'conv1.weight': v = torch.cat([v, torch.zeros(32, 1, 3, 3)], dim=1) else: continue model_dict[k] = v model.load_state_dict(model_dict) ``` 在上面的代码中,我们首先加载预训练模型,然后创建一个新的模型。接着,我们将预训练模型的参数复制到新模型中。如果在复制参数时发现形状不匹配,我们就修改conv1.weight的形状。具体来说,我们在conv1.weight的第二个维度上添加了一个额外的通道。这个通道的值都是0,因为我们不知道这个通道应该包含什么信息。最后,我们使用修改后的参数来更新新模型的状态字典。

RuntimeError: Error(s) in loading state_dict for Xception: size mismatch for conv1.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 4, 3, 3]).

这个错误是因为在加载预训练模型时,模型中某个参数的形状与当前模型中的形状不匹配。在这个例子中,Xception模型的conv1层预训练模型的权重形状是[32, 3, 3, 3],而当前模型中的形状是[32, 4, 3, 3]。这个问题可以通过在当前模型中手动修改该参数的形状来解决。具体来说,你需要在当前模型中找到conv1层的权重,然后将其形状改为[32, 3, 3, 3]。这个修改可以使用PyTorch的state_dict()函数来完成。

相关推荐

最新推荐

recommend-type

学习基于VUE的GIS.zip

"GIS" 通常指的是 地理信息系统(Geographic Information System)。它是一种特定的空间信息系统,用于捕获、存储、管理、分析、查询和显示与地理空间相关的数据。GIS 是一种多学科交叉的产物,涉及地理学、地图学、遥感技术、计算机科学等多个领域。 GIS 的主要特点和功能包括: 空间数据管理:GIS 能够存储和管理地理空间数据,这些数据可以是点、线、面等矢量数据,也可以是栅格数据(如卫星图像或航空照片)。 空间分析:GIS 提供了一系列的空间分析工具,用于查询、量测、叠加分析、缓冲区分析、网络分析等。 可视化:GIS 能够将地理空间数据以地图、图表等形式展示出来,帮助用户更直观地理解和分析数据。 数据输入与输出:GIS 支持多种数据格式的输入和输出,包括数字线划图(DLG)、数字高程模型(DEM)、数字栅格图(DRG)等。 决策支持:GIS 可以为城市规划、环境监测、灾害管理、交通规划等领域提供决策支持。 随着技术的发展,GIS 已经广泛应用于各个领域,成为现代社会不可或缺的一部分。同时,GIS 也在不断地发展和完善,以适应更多领域的需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

解决MATLAB开根号常见问题:提供开根号运算的解决方案

![解决MATLAB开根号常见问题:提供开根号运算的解决方案](https://img-blog.csdnimg.cn/d939d1781acc404d8c826e8af207e68f.png) # 1. MATLAB开根号运算基础** MATLAB开根号运算用于计算一个数的平方根。其语法为: ``` y = sqrt(x) ``` 其中: * `x`:要开根号的数或数组 * `y`:开根号的结果 开根号运算的输入可以是实数、复数、矩阵或数组。对于实数,开根号运算返回一个非负实数。对于复数,开根号运算返回一个复数。对于矩阵或数组,开根号运算逐元素执行,对每个元素进行开根号运算。 #
recommend-type

inputstream

Inputstream是Java中用于从输入流中读取数据的抽象类,它是Java I/O类库中的一部分。Inputstream提供了read()和read(byte[] b)等方法,可以从输入流中读取一个字节或一组字节。在Java中,FileInputStream、ByteArrayInputStream和StringBufferInputStream都是Inputstream的子类,用于读取不同类型的输入流。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。