Error(s) in loading state_dict for MobileNetV2: size mismatch for classifier.1.weight: copying a param with shape torch.Size([1000, 1280]) from checkpoint, the shape in current model is torch.Size([4, 1280]). size mismatch for classifier.1.bias: copying a param with shape torch.Size([1000]) from checkpoint, the shape in current model is torch.Size([4]).
时间: 2024-02-02 18:26:48 浏览: 256
这个错误是由于加载的预训练模型的参数与当前模型的参数形状不匹配导致的。根据错误信息可以看出,加载的预训练模型中`classifier.1.weight`的形状是`torch.Size([1000, 1280])`,而当前模型中该参数的形状是`torch.Size([4, 1280])`。同样地,`classifier.1.bias`的形状也不匹配。
要解决这个问题,你可以尝试以下几种方法之一:
1. 修改当前模型的`classifier`层,使其形状与预训练模型的形状相匹配。你可以使用`torch.nn.Linear`层替换`classifier.1`层,确保输入和输出的维度匹配。
2. 加载一个与当前模型结构匹配的预训练模型。如果你的当前模型中的`classifier`层与预训练模型中的`classifier`层形状不匹配,你可以选择一个与当前模型结构相同的预训练模型。
3. 如果你不需要使用预训练模型的`classifier`层,你可以在加载预训练模型时指定`exclude`参数来排除不需要的参数,只加载你需要的部分。
希望这些方法能帮助你解决问题。如果还有其他问题,请随时提问。
相关问题
RuntimeError: Error(s) in loading state_dict for Tacotron: size mismatch for encoder_proj.weight: copying a param with shape torch.Size([128, 512]) from checkpoint, the shape in current model is torch.Size([128, 1024]). size mismatch for decoder.attn_rnn.weight_ih: copying a param with shape torch.Size([384, 768]) from checkpoint, the shape in current model is torch.Size([384, 1280]). size mismatch for decoder.rnn_input.weight: copying a param with shape torch.Size([1024, 640]) from checkpoint, the shape in current model is torch.Size([1024, 1152]). size mismatch for decoder.stop_proj.weight: copying a param with shape torch.Size([1, 1536]) from checkpoint, the shape in current model is torch.Size([1, 2048]).
这个错误表明在加载模型参数时发生了问题。具体来说,在尝试将参数从检查点加载到当前模型时,发现了形状不匹配的问题。在这种情况下,参数的大小在检查点和当前模型中不同。需要修复代码或检查点来解决这个问题。
RuntimeError: Error(s) in loading state_dict for Wav2vec2Model: size mismatch for decoder.model.0.weight: copying a param with shape torch.Size([256, 512]) from checkpoint, the shape in current model is torch.Size([128, 512]). size mismatch for decoder.model.0.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for decoder.model.3.weight: copying a param with shape torch.Size([64, 256]) from checkpoint, the shape in current model is torch.Size([7, 128]). size mismatch for decoder.model.3.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([7]).如何解决报错请举例
这个错误是由于在加载预训练模型的参数时,模型的某些层的维度和预训练模型的参数维度不匹配导致的。解决这个问题的方法是调整模型的参数维度,使其与预训练模型的参数维度相匹配。下面是一个简单的示例:
```python
import torch
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.encoder = torch.nn.Linear(512, 256)
self.decoder = torch.nn.Linear(256, 512)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
model = MyModel()
pretrained_model = torch.load("pretrained_model.pth")
# 遍历预训练模型的参数,调整模型参数维度
for name, param in pretrained_model.items():
if name.startswith("decoder"):
if "weight" in name:
param = param[:256, :]
if "bias" in name:
param = param[:256]
model_dict = model.state_dict()
model_dict[name].copy_(param)
# 在此处使用模型进行推理或训练
```
在上面的示例中,我们首先定义了一个自定义模型MyModel,其中包含一个512维的输入层和一个512维的输出层。然后我们加载了一个名为“pretrained_model.pth”的预训练模型,并遍历了其所有的参数。对于decoder层的参数,我们将其维度调整为与自定义模型相匹配。最后,我们使用调整后的模型进行推理或训练。
阅读全文