c++代码 实现opencv三维重建和投影
时间: 2023-07-24 07:15:20 浏览: 129
以下是一个简单的C++代码实现OpenCV三维重建和投影的示例:
```
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
// 读取图像
Mat img1 = imread("image1.jpg", IMREAD_GRAYSCALE);
Mat img2 = imread("image2.jpg", IMREAD_GRAYSCALE);
// 特征点检测与匹配
Ptr<FeatureDetector> detector = SIFT::create();
vector<KeyPoint> keypoints1, keypoints2;
detector->detect(img1, keypoints1);
detector->detect(img2, keypoints2);
Ptr<DescriptorExtractor> extractor = SIFT::create();
Mat descriptors1, descriptors2;
extractor->compute(img1, keypoints1, descriptors1);
extractor->compute(img2, keypoints2, descriptors2);
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
vector<DMatch> matches;
matcher->match(descriptors1, descriptors2, matches);
// 三维重建
vector<Point3f> points3d;
vector<Point2f> points1, points2;
for (int i = 0; i < matches.size(); i++)
{
int queryIdx = matches[i].queryIdx;
int trainIdx = matches[i].trainIdx;
points1.push_back(keypoints1[queryIdx].pt);
points2.push_back(keypoints2[trainIdx].pt);
}
Mat R, t;
Matx33f K(1000, 0, img1.cols / 2,
0, 1000, img1.rows / 2,
0, 0, 1);
Mat E = findEssentialMat(points1, points2, K, RANSAC, 0.999, 1.0);
recoverPose(E, points1, points2, K, R, t);
Matx34f P1(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0);
Matx34f P2(R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0),
R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1),
R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2));
triangulatePoints(P1, P2, points1, points2, points3d);
// 投影
vector<Point2f> projected_points;
Matx33f K1(1000, 0, img1.cols / 2,
0, 1000, img1.rows / 2,
0, 0, 1);
Matx33f K2(1000, 0, img2.cols / 2,
0, 1000, img2.rows / 2,
0, 0, 1);
projectPoints(points3d, Matx31f(0, 0, 0), Matx31f(0, 0, 0), K1, Mat(), projected_points);
// 显示结果
Mat result;
hconcat(img1, img2, result);
for (int i = 0; i < projected_points.size(); i++)
{
line(result, points1[i], projected_points[i] + Point2f(img1.cols, 0), Scalar(0, 255, 0));
}
imshow("Result", result);
waitKey(0);
return 0;
}
```
以上代码实现了从两张图像中提取特征点,计算相机的位姿,并进行三维重建和投影。其中,使用了SIFT算法进行特征点提取和匹配,使用了findEssentialMat()和recoverPose()函数计算相机的位姿,使用了triangulatePoints()函数进行三维重建,使用了projectPoints()函数进行投影。最终,显示出了图像中特征点和重建出的三维点云的对应关系。
阅读全文