transform = transforms.Compose([注释
时间: 2024-04-04 20:27:28 浏览: 189
`transforms.Compose`是PyTorch中的一个类,用于将多个图像转换操作组合在一起。通过使用`transforms.Compose`,可以方便地将多个图像转换操作应用于数据集或图像。
在给定的代码中,`transform`是一个`transforms.Compose`对象,它将一系列图像转换操作组合在一起。每个转换操作都是`transforms`模块中的一个函数,用于对图像进行不同的处理。
例如,可以使用以下代码创建一个包含两个转换操作的`transform`对象:
```
transform = transforms.Compose([
transforms.Resize((256, 256)), # 将图像大小调整为256x256像素
transforms.ToTensor() # 将图像转换为张量
])
```
上述代码中,`transforms.Resize`用于调整图像大小,将其调整为256x256像素。`transforms.ToTensor`用于将图像转换为张量。
通过将这些转换操作组合在一起,可以在加载数据集或处理图像时方便地应用它们。
相关问题
为以下每句代码做注释:device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) img = Image.open("./huanglongbing.JPG") plt.imshow(img) img = data_transform(img) img = torch.unsqueeze(img, dim=0) try: json_file = open('./class_indices.json', 'r') class_indict = json.load(json_file) except Exception as e: print(e) exit(-1) model = resnet152(num_classes=38) model_weight_path = "./resNet152.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): output = torch.squeeze(model(img)) predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.show()
# 设备选择:如果有可用的cuda设备,则使用cuda:0,否则使用cpu
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 数据变换操作,包括图像大小调整、中心裁剪、转换为张量、归一化等
data_transform = transforms.Compose(
[transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
# 打开图像文件,显示图像
img = Image.open("./huanglongbing.JPG")
plt.imshow(img)
# 对图像进行数据变换
img = data_transform(img)
img = torch.unsqueeze(img, dim=0)
# 读取类别标签与索引的对应关系
try:
json_file = open('./class_indices.json', 'r')
class_indict = json.load(json_file)
except Exception as e:
print(e)
exit(-1)
# 加载预训练的resnet152模型,并载入预训练权重
model = resnet152(num_classes=38)
model_weight_path = "./resNet152.pth"
model.load_state_dict(torch.load(model_weight_path, map_location=device))
model.eval()
# 使用载入的模型进行推理,并输出预测结果
with torch.no_grad():
output = torch.squeeze(model(img))
predict = torch.softmax(output, dim=0)
predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].numpy())
plt.show()
为以下每句代码做注释:import torch from model import resnet152 from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt import json device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) img = Image.open("./huanglongbing.JPG") plt.imshow(img) img = data_transform(img) img = torch.unsqueeze(img, dim=0) try: json_file = open('./class_indices.json', 'r') class_indict = json.load(json_file) except Exception as e: print(e) exit(-1) model = resnet152(num_classes=38) model_weight_path = "./resNet152.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): output = torch.squeeze(model(img)) predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.show()
# 导入所需的库
import torch
from model import resnet152
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json
# 判断是否有GPU可用,若有则使用GPU,否则使用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 定义数据预处理的步骤,包括图片的resize、中心裁剪、转换为张量、以及标准化
data_transform = transforms.Compose(
[transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
# 打开图片并显示
img = Image.open("./huanglongbing.JPG")
plt.imshow(img)
# 对图片进行预处理,并增加一维作为batch_size
img = data_transform(img)
img = torch.unsqueeze(img, dim=0)
# 读取class_indices.json文件,获取类别标签
try:
json_file = open('./class_indices.json', 'r')
class_indict = json.load(json_file)
except Exception as e:
print(e)
exit(-1)
# 加载预训练好的模型,以及其对应的权重文件
model = resnet152(num_classes=38)
model_weight_path = "./resNet152.pth"
model.load_state_dict(torch.load(model_weight_path, map_location=device))
model.eval()
# 在不进行梯度计算的情况下,使用模型进行预测
with torch.no_grad():
output = torch.squeeze(model(img))
predict = torch.softmax(output, dim=0) # 对输出进行softmax处理
predict_cla = torch.argmax(predict).numpy() # 获取预测的类别
# 输出预测结果以及对应的概率,并显示图片
print(class_indict[str(predict_cla)], predict[predict_cla].numpy())
plt.show()
阅读全文