if img.shape[0] == 3: img = img.transpose(1, 2, 0)

时间: 2024-05-28 07:13:39 浏览: 24
这段代码的作用是将输入的图片从通道数在第一维的格式转换成通道数在最后一维的格式。通常在使用PyTorch训练神经网络时,输入图片的格式为(batch_size, channels, height, width),其中channels表示图片的通道数(比如RGB图片是3,灰度图片是1)。但是在使用某些库(比如matplotlib)可视化图片时,需要将图片格式转换为(height, width, channels)才能正确显示。因此这段代码就是将图片格式从PyTorch的格式转换为matplotlib可读的格式。
相关问题

import cv2 def save_image(img, path, nrow=10, padding=5): N,C,W,H = img.shape if (N%nrow!=0): print("N%nrow!=0") return ncol=int(N/nrow) img_all = [] for i in range(ncol): img_ = [] for j in range(nrow): img_.append(img[i*nrow+j]) img_.append(np.zeros((C,W,padding))) img_all.append(np.concatenate(img_, 2)) img_all.append(np.zeros((C,padding,img_all[0].shape[2]))) img = np.concatenate(img_all, 1) img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1) img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2) min_=img.min() max_=img.max() img=(img-min_)/(max_-min_)*255 img=img.transpose((1,2,0)) if C==3: img = img[:,:,::-1] cv2.imwrite(path,img)

这段代码是一个保存图像的函数,使用 OpenCV 库中的 `cv2.imwrite()` 函数将图像 `img` 保存到指定的路径 `path`。在保存之前,函数会对图像进行一系列的处理。 首先,函数会获取图像的形状信息(N,C,W,H),其中 N 表示图像数量,C 表示通道数,W 和 H 分别表示图像的宽度和高度。 接下来,函数会检查 N 是否能被 nrow 整除,如果不能整除,则会打印 "N%nrow!=0" 的提示信息,并返回。 然后,函数会计算 ncol,表示每行显示的图像数量。 接下来,函数会创建一个空列表 img_all,用于存储拼接后的图像。 然后,函数会通过两层循环遍历图像,将每个图像添加到 img_ 列表中,并在每个图像之间插入一个大小为 (C,W,padding) 的全零数组。 接着,函数会将 img_ 列表中的图像进行拼接,得到一个拼接后的图像,并将其添加到 img_all 列表中。同时,在每个拼接后的图像之间插入一个大小为 (C,padding,img_all[0].shape[2]) 的全零数组。 然后,函数会将 img_all 中所有拼接后的图像按照水平方向进行拼接,得到最终的大图像 img。 接下来,函数会在大图像的左侧和顶部分别添加一段大小为 (C,padding,img.shape[2]) 和 (C,img.shape[1],padding) 的全零数组,用于增加边缘的间距。 然后,函数会对图像进行归一化处理,将像素值限制在 0 到 255 之间。 最后,函数会将图像的通道顺序从 (1,2,0) 转换为 (0,1,2)。如果图像的通道数为 3,则会将通道顺序反转。 最后,函数会使用 `cv2.imwrite()` 函数将处理后的图像保存到指定的路径。

def __getitem__(self, index): while(self.index+self.TreePoint>self.datalen): filename = self.dataNames[self.fileIndx] # print(filename) if self.dataBuffer: a = [self.dataBuffer[0][self.index:].copy()] else: a=[] cell,mat = self.loader(filename) for i in range(cell.shape[1]): data = np.transpose(mat[cell[0,i]]) #shape[ptNum,Kparent, Seq[1],Level[1],Octant[1],Pos[3] ] e.g 123456*7*6 data[:,:,0] = data[:,:,0] - 1 a.append(data[:,-levelNumK:,:])# only take levelNumK level feats self.dataBuffer = [] self.dataBuffer.append(np.vstack(tuple(a))) self.datalen = self.dataBuffer[0].shape[0] self.fileIndx+=1 # shuffle step = 1, will load continuous mat self.index = 0 if(self.fileIndx>=self.fileLen): self.fileIndx=index%self.fileLen # try read img = [] img.append(self.dataBuffer[0][self.index:self.index+self.TreePoint]) self.index+=self.TreePoint if self.transform is not None: img = self.transform(img) return img

这段代码定义了 `DataFolder` 类的 `__getitem__` 方法,用于根据给定的索引 `index` 获取数据集中的某个样本。 方法的实现如下: 1. 首先,通过 while 循环判断当前索引加上树结构节点数量是否超过当前数据集的长度 `self.datalen`。如果超过,则表示当前文件中的数据已经被完全使用,需要加载下一个文件。 2. 在 while 循环中,首先获取下一个文件名 `filename`。 3. 如果当前数据缓冲区 `self.dataBuffer` 不为空,则将其第一个元素中从当前索引开始到末尾的部分复制给列表 `a`。否则,将 `a` 初始化为空列表。 4. 调用加载器 `self.loader(filename)` 并将返回的 `cell` 和 `mat` 赋值给对应的变量。 5. 使用循环遍历 `cell` 的第二个维度,即 `cell.shape[1]`,并在每次迭代中获取 `mat[cell[0, i]]` 的转置结果,并将其减去1。然后,将该结果的最后一维(Pos 维度)中的最后 `levelNumK` 个元素切片出来,并将其添加到列表 `a` 中。 6. 清空数据缓冲区,并将列表 `a` 中的所有元素按垂直方向堆叠起来,形成一个新的数据缓冲区,并将其赋值给 `self.dataBuffer`。 7. 更新数据集的长度 `self.datalen` 为新的数据缓冲区的长度。 8. 增加文件索引 `self.fileIndx` 的值,以加载下一个文件。 9. 将索引 `self.index` 重置为0。 10. 如果文件索引 `self.fileIndx` 超过了文件数量 `self.fileLen`,则将文件索引设置为 `index` 对文件数量取模的结果,以确保循环使用文件。 11. 尝试读取数据缓冲区中从 `self.index` 开始到 `self.index+self.TreePoint` 结束的部分,并将其添加到列表 `img` 中。 12. 将索引 `self.index` 增加树结构节点数量,以便下一次获取样本时可以继续读取数据缓冲区中的下一个部分。 13. 如果定义了数据转换操作 `self.transform`,则将列表 `img` 应用该转换操作。 14. 最后,返回转换后的列表 `img`。 这段代码通过循环加载数据并维护一个数据缓冲区,以实现按需加载数据,同时提供了一些额外的功能来处理数据集的边界情况。

相关推荐

import torch from djitellopy import Tello import cv2 import numpy as np import models from models import yolo def get_model(): # 假设 'yolov5s.yaml' 是 yolov5s 模型的定义文件的路径 model = models.yolo.Model('models/yolov5s.yaml') checkpoint = torch.load('weights/yolov5s.pt') model.load_state_dict(checkpoint['model']) model.eval() return model def preprocess_frame(img): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (640, 640)) # 将图像大小调整为模型的输入大小 img = img / 255.0 # 将像素值归一化到 [0, 1] img = np.transpose(img, (2, 0, 1)) # 将图像从 HWC 格式转换为 CHW 格式 img = torch.from_numpy(img).float() # 将 Numpy 数组转换为 PyTorch 张量 img = img.unsqueeze(0) # 增加一个批量维度 return img def process_frame(model, img): img_preprocessed = preprocess_frame(img) results = model(img_preprocessed) # 处理模型的输出 results = results[0].detach().cpu().numpy() # 将结果从 GPU 移动到 CPU 并转换为 Numpy 数组 for x1, y1, x2, y2, conf, cls in results: # 将坐标从 [0, 1] 范围转换回图像的像素坐标 x1, y1, x2, y2 = x1 * img.shape[1], y1 * img.shape[0], x2 * img.shape[1], y2 * img.shape[0] # 在图像上画出边界框 cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2) # 在边界框旁边显示类别和置信度 cv2.putText(img, f'{int(cls)} {conf:.2f}', (int(x1), int(y1) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) # 显示图像 cv2.imshow('Tello with YOLOv5', img) return cv2.waitKey(1) def main(): tello = Tello() tello.connect() tello.streamon() frame_read = tello.get_frame_read() model = get_model() frame_skip = 2 # 每两帧处理一次 counter = 0 while True: if counter % frame_skip == 0: # 只处理每两帧中的一帧 img = frame_read.frame process_frame(model, img) counter += 1 cv2.destroyAllWindows() if __name__ == '__main__': main() 修改这段代码

def predict(im0s): # 进行推理 img = torch.zeros((1, 3, imgsz, imgsz), device=device) # 初始化img _ = model(img.half() if half else img) if device.type != 'cpu' else None # 运行一次模型 # 设置数据加载器并进行推理 img = letterbox(im0s, new_shape=imgsz)[0] # 对输入图像进行resize img = img[:, :, ::-1].transpose(2, 0, 1) # BGR转RGB, 3x416x416 img = np.ascontiguousarray(img) # 返回具有相同数据和顺序的相同形状数组 img = torch.from_numpy(img).to(device) # 将numpy数组转换为张量并传递到设备上 img = img.half() if half else img.float() # 数据类型转换为float16或float32 img /= 255.0 # 将像素值从0-255映射到0.0-1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # 给张量添加一个额外的纬度,输出新的张量 # 进行推理 pred = model(img)[0] # 应用非极大值抑制 pred = non_max_suppression(pred, opt_conf_thres, opt_iou_thres) # 处理检测结果 ret = [] for i, det in enumerate(pred): # 每张图片有多个检测结果 if len(det): # 将检测框位置从img_size调整到原始图像大小 det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0s.shape).round() # 输出结果 for *xyxy, conf, cls in reversed(det): label = f'{names[int(cls)]}' # 输出结果的标签信息 prob = round(float(conf) * 100, 2) # 置信度转换 ret_i = [label, prob, xyxy] # 将结果存入list ret.append(ret_i) # 返回信息:标签信息 'face' 'smoke' 'drink' 'phone',对应的置信度和位置信息(检测框) return ret

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') 将上述代码中引入超像素池化代码:import cv2 import numpy as np # 读取图像 img = cv2.imread('3.jpg') # 定义超像素分割器 num_segments = 60 # 超像素数目 slic = cv2.ximgproc.createSuperpixelSLIC(img, cv2.ximgproc.SLICO, num_segments) # 进行超像素分割 slic.iterate(10) # 获取超像素标签和数量 labels = slic.getLabels() num_label = slic.getNumberOfSuperpixels() # 对每个超像素进行池化操作,这里使用平均值池化 pooled = [] for i in range(num_label): mask = labels == i region = img[mask] pooled.append(region.mean(axis=0)) # 将池化后的特征图可视化 pooled = np.array(pooled, dtype=np.uint8) pooled_features = pooled.reshape(-1) pooled_img = cv2.resize(pooled_features, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_NEAREST) print(pooled_img.shape) cv2.imshow('Pooled Image', pooled_img) cv2.waitKey(0),并显示超像素池化后的特征图

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

mmexport1719207093976.jpg

mmexport1719207093976.jpg
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到