给定二叉树的先序、中序和后序遍历序列中的任意两个,就可以唯一确定一棵二叉树。
时间: 2023-10-28 17:01:19 浏览: 118
这个说法是不正确的。虽然先序、中序和后序遍历序列可以唯一确定一棵二叉树,但是任意两个遍历序列并不能唯一确定一棵二叉树。这是因为存在多个不同的二叉树,它们的先序、中序和后序遍历序列相同。例如,以下两棵二叉树的先序、中序和后序遍历序列都是一样的:
```
1 2
/ \ / \
2 3 1 4
/ \ / \
4 5 3 5
```
因此,如果只给定先序、中序或后序中的任意两个遍历序列,就不能确定唯一的二叉树。
相关问题
二叉树遍历还原给出二叉树的中序遍历序列和后序遍历序列,编程还原该二叉树。 输入: 第1行为二叉树的中序遍历序列 第2行为二叉树的后序遍历序列 输出: 二叉树的按层遍历序列
在计算机科学中,当给定一个二叉树的中序遍历序列(In-order traversal)和后序遍历序列(Post-order traversal),我们可以利用这两个序列的信息重建整个二叉树。这是因为中序遍历可以得到节点值有序的左子树、根节点、右子树顺序,而后序遍历则是左子树、右子树、根节点的顺序。
以下是基本步骤:
1. **创建空堆栈**:用于存储后序遍历中的元素,因为后序遍历最后一个访问的是根节点。
2. **中序遍历序列**:
- 遍历过程中,遇到节点值就压入堆栈,因为中序遍历左子树->根节点->右子树。
3. **后序遍历序列**:
- 当后序遍历的第一个元素与当前堆栈顶元素匹配时,说明找到了根节点,将它弹出并作为新二叉树的根,同时记录它的左右子节点。
4. **构建二叉树**:继续从后序遍历中移除元素,直到遍历完,此时堆栈只剩下一个节点,它是右子节点;然后将其与前一个找到的根节点连接起来。
最后,我们需要按照层序遍历(Level Order Traversal)的规则打印出二叉树:从上到下,同一层从左到右。
以下是Python的一个示例代码片段,假设输入序列已经存储在`inorder`和`postorder`变量中:
```python
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
def buildTree(inorder, postorder):
if inorder and postorder:
root_val = postorder.pop() # 根据后序遍历找到根节点
root = TreeNode(root_val)
index = inorder.index(root_val) # 找到根节点在中序遍历中的位置
root.left = buildTree(inorder[:index], postorder) # 递归处理左子树
root.right = buildTree(inorder[index+1:], postorder) # 递归处理右子树
return root
# 示例
in_order = [4,2,5,1,3,6]
post_order = [4,5,2,6,3,1]
root = buildTree(in_order, post_order)
# 现在你可以调用 `levelOrderTraversal(root)` 来获取层序遍历结果
```
二叉树遍历 内存限制:256 MB 时间限制:1.000 S 评测方式:文本比较 命题人:外部导入 提交:1 解决:1 题目描述 树和二叉树基本上都有先序、中序、后序、按层遍历等遍历顺序,给定中序和其它一种遍历的序列就可以确定一棵二叉树的结构。 假定一棵二叉树一个结点用一个字符描述,现在给出中序和后序遍历的字符串,求该树的先序遍历字符串。 输入 两行,每行是由字母组成的字符串(一行的每个字符都是唯一的),分别表示二叉树的中序遍历和后序遍历的序列。 输出 一行,表示二叉树的先序序列。 样例输入 复制 DBEAC ABCDE 样例输出 复制 ABDEC
以下是一种基于递归的实现方式,可以用来解决该问题:
```python
def build_tree(inorder, postorder):
if not inorder or not postorder:
return None
root_val = postorder[-1]
root = TreeNode(root_val)
root_idx = inorder.index(root_val)
left_inorder = inorder[:root_idx]
right_inorder = inorder[root_idx+1:]
left_postorder = postorder[:root_idx]
right_postorder = postorder[root_idx:-1]
root.left = build_tree(left_inorder, left_postorder)
root.right = build_tree(right_inorder, right_postorder)
return root
def preorder_traversal(root):
if not root:
return []
res = [root.val]
res += preorder_traversal(root.left)
res += preorder_traversal(root.right)
return res
inorder = input().strip()
postorder = input().strip()
root = build_tree(inorder, postorder)
preorder = preorder_traversal(root)
print("".join(preorder))
```
该算法的时间复杂度为 $O(n^2)$,其中 $n$ 是二叉树的节点数。可以通过使用哈希表来优化查找节点位置的时间复杂度,将其优化到 $O(n)$。
阅读全文