DPC-KNN-PCA算法python完整代码
时间: 2023-08-08 20:05:48 浏览: 311
以下是DPC-KNN-PCA算法的Python完整代码,包括数据预处理、DPC-KNN-PCA算法实现和结果可视化:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 数据预处理
data = pd.read_csv('data.csv')
X = data.values[:, :-1]
y = data.values[:, -1]
# DPC-KNN-PCA算法实现
def DPC_KNN_PCA(X, k, alpha, beta, gamma):
n, m = X.shape
D = np.zeros((n, n))
for i in range(n):
for j in range(n):
D[i, j] = np.linalg.norm(X[i] - X[j])
D_sort = np.sort(D, axis=1)
idx_sort = np.argsort(D, axis=1)
K = np.zeros((n, k))
for i in range(n):
for j in range(k):
K[i, j] = idx_sort[i, j+1]
W = np.zeros((n, n))
for i in range(n):
for j in range(k):
W[int(K[i, j]), i] = 1
W = np.maximum(W, W.T)
D_bar = np.diag(np.sum(W, axis=1))
L = D_bar - W
M = np.dot(X.T, L).dot(X)
[U, S, V] = np.linalg.svd(M)
U_pca = U[:, :2]
Z = np.dot(X, U_pca)
L_pca = np.dot(U_pca.T, M).dot(U_pca)
D_pca = np.diag(np.sum(L_pca, axis=1))
L_norm = np.linalg.inv(np.sqrt(D_pca)).dot(L_pca).dot(np.linalg.inv(np.sqrt(D_pca)))
W_norm = np.exp(-alpha*L_norm) - np.eye(n)
D_norm = np.diag(np.sum(W_norm, axis=1))
L1_norm = D_norm - W_norm
L2_norm = np.linalg.inv(np.sqrt(D_norm)).dot(L_norm).dot(np.linalg.inv(np.sqrt(D_norm)))
W_dpc = np.exp(-beta*L1_norm - gamma*L2_norm) - np.eye(n)
D_dpc = np.diag(np.sum(W_dpc, axis=1))
L_dpc = D_dpc - W_dpc
return Z, L_dpc
# 运行DPC-KNN-PCA算法并可视化结果
Z, L_dpc = DPC_KNN_PCA(X, 10, 0.5, 0.1, 0.1)
plt.scatter(Z[:, 0], Z[:, 1], c=y)
plt.show()
```
阅读全文