DPC改进算法python代码
时间: 2023-09-10 08:13:54 浏览: 174
DPC算法源码
4星 · 用户满意度95%
DPC改进算法的Python代码如下:
```python
import numpy as np
def select_dc(dists):
N = np.shape(dists)\[0\]
tt = np.reshape(dists, N*N)
percent = 2.0
position = int(N * (N - 1) * percent / 100)
dc = np.sort(tt)\[position + N\]
return dc
def getDistanceMatrix(datas):
N, D = np.shape(datas)
dists = np.zeros(\[N, N\])
for i in range(N):
for j in range(N):
vi = datas\[i, :\]
vj = datas\[j, :\]
dists\[i, j\] = np.sqrt(np.dot((vi - vj), (vi - vj)))
return dists
```
这段代码中,`select_dc`函数用于确定邻域截断距离dc,它通过计算平均每个点周围距离小于dc的点的数目占总点数的1%-2%来确定dc的值。`getDistanceMatrix`函数用于计算给定数据集中各个点之间的欧几里得距离,并返回一个距离矩阵。这个距离矩阵可以用于DPC改进算法的其他步骤中。
#### 引用[.reference_title]
- *1* [密度峰值聚类算法DPC(Density Peak Clustering)理论基础与python实现](https://blog.csdn.net/qq_37055672/article/details/130000567)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [DPC密度峰值聚类算法原理详解二](https://blog.csdn.net/qq_42519121/article/details/128956562)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文