DPC算法 python
时间: 2023-07-10 11:23:03 浏览: 221
DPC(Density Peak Clustering)算法是一种基于密度的聚类算法,可以有效地处理具有不同密度的数据集。下面是一个简单的 Python 实现:
```python
import numpy as np
def dpc(data, dc, rho):
# 计算样本之间的距离矩阵
dist = np.sqrt(np.sum((data[:, np.newaxis, :] - data[np.newaxis, :, :]) ** 2, axis=2))
# 计算每个样本的局部密度
rho = np.sum(dist < dc, axis=1)
# 找到密度更高的样本作为核心点
core_points = np.where(rho > np.mean(rho))[0]
# 计算每个核心点到其它点的距离
core_dist = np.min(dist[core_points][:, core_points], axis=1)
# 找到每个样本的最近的核心点
nearest_core_points = core_points[np.argmin(dist[core_points][:, core_points], axis=1)]
# 找到每个样本的密度更高的近邻
higher_density_neighbors = np.where(rho > rho[nearest_core_points])[0]
# 找到每个样本的密度更高的近邻中距离最远的点
max_dist_neighbors = higher_density_neighbors[np.argmax(dist[higher_density_neighbors][:, nearest_core_points], axis=1)]
# 划分簇
clusters = {}
for i, p in enumerate(data):
if i not in core_points:
# 不是核心点的样本归类到最近的核心点所在的簇
c = nearest_core_points[i]
if c not in clusters:
clusters[c] = []
clusters[c].append(i)
else:
# 核心点归类到距离最近的核心点所在的簇
c = core_points[np.argmin(core_dist[core_points])]
if c not in clusters:
clusters[c] = []
clusters[c].append(i)
return clusters
```
其中,`data` 是一个 $n \times m$ 的数组,表示 $n$ 个 $m$ 维的数据点;`dc` 是一个阈值,用于确定核心点;`rho` 是一个 $n$ 维的数组,表示每个样本的局部密度。函数返回一个字典,表示划分的簇。
阅读全文
相关推荐
















