请使用PCL1.7.0和Eigen3.0算法库,并使用用PPF方法在简单的装捡环境中估计无纹理工件位姿,请提供详细的c++代码
时间: 2024-02-13 20:04:03 浏览: 275
好的,以下是使用PCL1.7.0和Eigen3.0算法库进行PPF位姿估计的C++代码示例。首先,我们需要从PCL中导入相关的头文件:
```c++
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/ppf.h>
#include <pcl/filters/uniform_sampling.h>
#include <pcl/registration/ppf_registration.h>
```
接下来,我们可以定义一些常量和变量,用于指定输入点云的文件名、采样间隔、PPF匹配阈值等参数:
```c++
const std::string input_file = "input_cloud.pcd";
const float sampling_step = 0.005f;
const float ppf_match_threshold = 0.05f;
const float voxel_size = 0.005f;
```
接着,我们可以读取输入点云文件,并进行点云降采样和法向量估计:
```c++
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile(input_file, *cloud);
// 降采样
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
pcl::UniformSampling<pcl::PointXYZ> uniform_sampling;
uniform_sampling.setInputCloud(cloud);
uniform_sampling.setRadiusSearch(sampling_step);
uniform_sampling.filter(*cloud_filtered);
// 估计法向量
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimation;
normal_estimation.setInputCloud(cloud_filtered);
normal_estimation.setSearchMethod(tree);
normal_estimation.setRadiusSearch(0.03);
normal_estimation.compute(*normals);
```
然后,我们可以使用PPF估计器对输入点云进行PPF特征估计,并对估计结果进行降采样:
```c++
pcl::PPFEstimation<pcl::PointXYZ, pcl::Normal, pcl::PPFSignature>::Ptr ppf_estimator(new pcl::PPFEstimation<pcl::PointXYZ, pcl::Normal, pcl::PPFSignature>);
ppf_estimator->setInputCloud(cloud_filtered);
ppf_estimator->setInputNormals(normals);
pcl::PointCloud<pcl::PPFSignature>::Ptr ppf_features(new pcl::PointCloud<pcl::PPFSignature>);
ppf_estimator->compute(*ppf_features);
// 降采样
pcl::PointCloud<pcl::PPFSignature>::Ptr ppf_features_downsampled(new pcl::PointCloud<pcl::PPFSignature>);
pcl::VoxelGrid<pcl::PPFSignature> voxel_filter;
voxel_filter.setInputCloud(ppf_features);
voxel_filter.setLeafSize(voxel_size, voxel_size, voxel_size);
voxel_filter.filter(*ppf_features_downsampled);
```
接着,我们可以定义一个PPF匹配器,并使用它对点云进行位姿估计:
```c++
pcl::registration::PPFRegistration<pcl::PointXYZ, pcl::PointXYZ> ppf_registration;
ppf_registration.setInputSource(cloud_filtered);
ppf_registration.setInputTarget(cloud_filtered);
ppf_registration.setInputFeatureSource(ppf_features_downsampled);
ppf_registration.setInputFeatureTarget(ppf_features_downsampled);
ppf_registration.setMaxIterations(100);
ppf_registration.setCheckMeanDistance(true);
ppf_registration.setDistanceStepClustering(0.05);
ppf_registration.setClusteringThreshold(5);
ppf_registration.setSearchMethodTarget(tree);
ppf_registration.setSearchMethodSource(tree);
ppf_registration.setSimilarityThreshold(ppf_match_threshold);
Eigen::Matrix4f transformation;
ppf_registration.align(transformation);
```
最后,我们可以输出估计得到的位姿矩阵:
```c++
std::cout << "Estimated transformation matrix:" << std::endl;
std::cout << transformation << std::endl;
```
完整的代码示例如下:
```c++
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/ppf.h>
#include <pcl/filters/uniform_sampling.h>
#include <pcl/registration/ppf_registration.h>
int main(int argc, char** argv)
{
const std::string input_file = "input_cloud.pcd";
const float sampling_step = 0.005f;
const float ppf_match_threshold = 0.05f;
const float voxel_size = 0.005f;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile(input_file, *cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
pcl::UniformSampling<pcl::PointXYZ> uniform_sampling;
uniform_sampling.setInputCloud(cloud);
uniform_sampling.setRadiusSearch(sampling_step);
uniform_sampling.filter(*cloud_filtered);
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimation;
normal_estimation.setInputCloud(cloud_filtered);
normal_estimation.setSearchMethod(tree);
normal_estimation.setRadiusSearch(0.03);
normal_estimation.compute(*normals);
pcl::PPFEstimation<pcl::PointXYZ, pcl::Normal, pcl::PPFSignature>::Ptr ppf_estimator(new pcl::PPFEstimation<pcl::PointXYZ, pcl::Normal, pcl::PPFSignature>);
ppf_estimator->setInputCloud(cloud_filtered);
ppf_estimator->setInputNormals(normals);
pcl::PointCloud<pcl::PPFSignature>::Ptr ppf_features(new pcl::PointCloud<pcl::PPFSignature>);
ppf_estimator->compute(*ppf_features);
pcl::PointCloud<pcl::PPFSignature>::Ptr ppf_features_downsampled(new pcl::PointCloud<pcl::PPFSignature>);
pcl::VoxelGrid<pcl::PPFSignature> voxel_filter;
voxel_filter.setInputCloud(ppf_features);
voxel_filter.setLeafSize(voxel_size, voxel_size, voxel_size);
voxel_filter.filter(*ppf_features_downsampled);
pcl::registration::PPFRegistration<pcl::PointXYZ, pcl::PointXYZ> ppf_registration;
ppf_registration.setInputSource(cloud_filtered);
ppf_registration.setInputTarget(cloud_filtered);
ppf_registration.setInputFeatureSource(ppf_features_downsampled);
ppf_registration.setInputFeatureTarget(ppf_features_downsampled);
ppf_registration.setMaxIterations(100);
ppf_registration.setCheckMeanDistance(true);
ppf_registration.setDistanceStepClustering(0.05);
ppf_registration.setClusteringThreshold(5);
ppf_registration.setSearchMethodTarget(tree);
ppf_registration.setSearchMethodSource(tree);
ppf_registration.setSimilarityThreshold(ppf_match_threshold);
Eigen::Matrix4f transformation;
ppf_registration.align(transformation);
std::cout << "Estimated transformation matrix:" << std::endl;
std::cout << transformation << std::endl;
return 0;
}
```
需要注意的是,这个示例代码仅适用于简单的无纹理工件位姿估计,如果您的场景比较复杂,需要根据具体情况调整参数和算法。另外,由于PPF算法比较耗时,建议将输入点云进行降采样和体素化处理,以加快计算速度。
阅读全文