激活函数leaky_relu和tanh的区别
时间: 2024-05-31 18:10:32 浏览: 138
Leaky ReLU和tanh都是常用的激活函数,它们的区别在于:
1. 取值范围:tanh的输出值在[-1,1]之间,而Leaky ReLU的输出值在负数时会有一个小的斜率,因此能够输出任意小的负值。
2. 优化能力:在深度神经网络中,Leaky ReLU比tanh更容易优化,因为tanh在输入为大负数或大正数时,梯度会变得非常小,这会导致梯度消失的问题。而Leaky ReLU则没有这个问题。
3. 计算速度:Leaky ReLU的计算速度比tanh更快,因为tanh需要进行指数运算,而Leaky ReLU只需要进行简单的比较运算。
综上所述,如果数据的取值范围在[-1,1]之间并且不需要输出任意小的负值,可以选择tanh作为激活函数;如果需要输出任意小的负值或者是在深度神经网络中需要更容易优化的激活函数,可以选择Leaky ReLU作为激活函数。
相关问题
绘制5种常见激活函数的图:Sigmoid 激活函数、tanh 激活函数、ReLU 激活函数、Leaky ReLU激活函数、ELU激活函数使用python实现
以下是使用Python绘制5种常见激活函数的图的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# Sigmoid 激活函数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# tanh 激活函数
def tanh(x):
return np.tanh(x)
# ReLU 激活函数
def relu(x):
return np.maximum(0, x)
# Leaky ReLU 激活函数
def leaky_relu(x, alpha=0.01):
return np.maximum(alpha * x, x)
# ELU 激活函数
def elu(x, alpha=1.0):
return np.where(x > 0, x, alpha * (np.exp(x) - 1))
# 生成 x 值
x = np.linspace(-10, 10, 100)
# 绘制激活函数图像
plt.figure(figsize=(10, 6))
plt.plot(x, sigmoid(x), label='Sigmoid')
plt.plot(x, tanh(x), label='tanh')
plt.plot(x, relu(x), label='ReLU')
plt.plot(x, leaky_relu(x), label='Leaky ReLU')
plt.plot(x, elu(x), label='ELU')
plt.xlabel('x')
plt.ylabel('Activation')
plt.title('Activation Functions')
plt.legend()
plt.grid(True)
plt.show()
```
希望这个代码可以帮助你绘制出Sigmoid、tanh、ReLU、Leaky ReLU和ELU激活函数的图像。
ReLU激活函数、Leaky ReLU激活函数、Parametric ReLU激活函数的原理、优缺点、
应用场景
1. ReLU激活函数
原理:ReLU激活函数是一种简单的非线性激活函数,它将所有负数输入映射到零,将所有正数输入保持不变。即:
$$
f(x) = \max(0, x)
$$
优点:
- 计算简单,速度快,不需要像sigmoid和tanh一样进行复杂的计算和指数运算;
- 避免了梯度消失问题,能够有效地训练深度神经网络;
- 只有两种输出情况,计算量小,容易实现并行计算。
缺点:
- ReLU的输出不是中心化的,会导致一些神经元永远不会被激活,这被称为“死亡ReLU”问题;
- 当输入为负数时,梯度为0,这会导致神经元在训练过程中永远不会被更新,称为“ReLU坍塌”问题;
- ReLU对于输入的负数部分完全忽略,没有进行任何处理,这可能会导致激活函数无法充分利用输入中的信息。
应用场景:ReLU适用于大多数深度学习任务,特别是在卷积神经网络中的卷积层和池化层中,因为图像和视频数据通常具有稀疏性,ReLU可以有效减少计算量并提高模型性能。
2. Leaky ReLU激活函数
原理:Leaky ReLU激活函数是对ReLU的改进,它在输入为负数时,不直接将其变为0,而是乘上一个小的正数$\alpha $,通常取0.01,即:
$$
f(x) = \begin{cases}
x & \text{if } x\geq 0 \\
\alpha x & \text{if } x<0
\end{cases}
$$
优点:
- Leaky ReLU能够缓解ReLU的“死亡ReLU”问题,使得神经元在输入为负数时也能够被激活;
- Leaky ReLU比ReLU更加鲁棒,即更能够处理异常数据和噪声数据。
缺点:
- Leaky ReLU仍然存在“ReLU坍塌”问题;
- Leaky ReLU的计算比ReLU要复杂一些。
应用场景:Leaky ReLU适用于大多数深度学习任务,特别是在卷积神经网络中的卷积层和池化层中,因为它能够有效减少计算量并提高模型性能。
3. Parametric ReLU激活函数
原理:Parametric ReLU激活函数是对Leaky ReLU的改进,它允许学习一个参数$\alpha$,使得该参数能够在训练过程中自适应地调整,即:
$$
f(x) = \begin{cases}
x & \text{if } x\geq 0 \\
\alpha x & \text{if } x<0
\end{cases}
$$
其中$\alpha$是一个可学习的参数。
优点:
- Parametric ReLU能够在训练过程中自适应地调整参数,从而更加灵活和适应不同的数据分布;
- Parametric ReLU比Leaky ReLU更加强大,因为它可以学习一个适合当前数据的$\alpha$值。
缺点:
- Parametric ReLU的计算量比Leaky ReLU更大;
- Parametric ReLU的参数量比Leaky ReLU更多。
应用场景:Parametric ReLU适用于各种深度学习任务,特别是在需要自适应地调整参数的任务中,如图像分类、目标检测和语音识别等。
阅读全文