介绍激活函数,并详细说明tanh和leaky relu激活函数作用与结构
时间: 2024-03-12 21:24:40 浏览: 86
关于激活函数
5星 · 资源好评率100%
激活函数是一种非线性函数,它将神经网络的输入映射到非线性空间中,使得神经网络可以学习和处理非线性的特征。常用的激活函数有sigmoid、ReLU、tanh、leaky ReLU等。
tanh函数是一种类似于sigmoid函数的激活函数,其公式为f(x) = (e^x - e^-x) / (e^x + e^-x),它将输入的值映射到区间[-1,1]上。与sigmoid函数不同的是,tanh函数的输出均值为0,方差为1,因此在神经网络中应用更为广泛。tanh函数的导数在输入值为0时为最大值1,而在输入值接近于1或-1时,导数接近于0,因此tanh函数在神经网络的反向传播中容易出现梯度消失的问题。
leaky ReLU是一种修正线性单元(ReLU)的变种,其公式为f(x) = max(0.01x,x),当输入值小于0时,其输出值为输入值的0.01倍,从而避免了ReLU函数在输入值小于0时出现的“神经元死亡”问题。leaky ReLU函数具有ReLU函数的优点,如计算速度快、不会出现梯度消失等,同时还能够避免ReLU函数的缺点。因此,在实际应用中,leaky ReLU函数通常比ReLU函数更加有效。
总的来说,tanh函数和leaky ReLU函数都是常用的激活函数,它们能够有效地解决神经网络中出现的梯度消失和神经元死亡问题,从而提高神经网络的性能和效果。
阅读全文