syms da dalpha dd dtheta dbeta; da = 0; dalpha = 0; dd = 0; dtheta = 0; dbeta = 0; du = pi/180; L1(1) = Link('theta', 90*du+0.02+dtheta, 'a', 0+0.001+da, 'alpha', 0+0.003+dalpha, 'qlim', [180*du, 365*du], 'offset', 0, 'modified'); L1(2) = Link('d', 0+0.001+dd, 'a', 185+0.0079, 'alpha', 0+0.001, 'qlim', [3*du, 63*du], 'offset', 0, 'modified'); L1(3) = Link('d', 90+0.005+dd, 'a', 0+0.005+da, 'alpha', pi/2+0.005+dalpha, 'qlim', [60*du, 120*du], 'offset', pi/2, 'modified'); L1(4) = Link('theta', 0+dtheta, 'a', 120+0.12, 'alpha', pi/2, 'qlim', [230*du, 326*du], 'offset', 0, 'modified'); L1(3).theta = L1(3).theta + 0.023 + dtheta; L1(4).theta = L1(4).theta + 0.08 + dtheta; Needle = SerialLink(L1, 'name', 'Needle'); theta1 = 0.1; theta2 = 0.2; theta3 = 0.3; theta4 = 0.4; T01_error = DH(L1(1).theta+dtheta, L1(1).a+da, L1(1).d+dd, L1(1).alpha+dalpha); T12_error = DH(L1(2).theta+dtheta, L1(2).a+da, L1(2).d+dd, L1(2).alpha+dalpha); T23_error = DH(L1(3).theta+dtheta, L1(3).a+da, L1(3).d+dd, L1(3).alpha+dalpha); T34_error = DH(L1(4).theta+dtheta, L1(4).a+da, L1(4).d+dd, L1(4).alpha+dalpha); T_error = simplify(T01_error*T12_error*T23_error*T34_error); T = Needle.fkine([theta1, theta2, theta3, theta4]); T_error = subs(T_error, [theta1, theta2, theta3, theta4], [L1(1).theta, L1(2).theta, L1(3).theta, L1(4).theta]); T_total = T*T_error; dx = T_total(1, 4); dy = T_total(2, 4); dz = T_total(3, 4); rx = atan2(T_total(3, 2), T_total(3, 3)); ry = atan2(-T_total(3, 1), sqrt(T_total(3, 2)^2 + T_total(3, 3)^2)); rz = atan2(T_total(2, 1), T_total(1, 1)); disp(['dx = ', num2str(dx)]); disp(['dy = ', num2str(dy)]); disp(['dz = ', num2str(dz)]); disp(['rx = ', num2str(rx)]); disp(['ry = ', num2str(ry)]); disp(['rz = ', num2str(rz)]);这段代码运行不出来,显示DH未定义,该怎么操作修改让这段MATLAB代码能够运行出来

时间: 2024-04-28 17:25:31 浏览: 42
这段代码中调用了DH函数,但是DH函数未定义,需要先在MATLAB中定义该函数。DH函数通常用于建立机械臂各个关节的变换矩阵,其定义如下: function T = DH(theta, d, a, alpha) T = [cos(theta) -sin(theta)*cos(alpha) sin(theta)*sin(alpha) a*cos(theta); sin(theta) cos(theta)*cos(alpha) -cos(theta)*sin(alpha) a*sin(theta); 0 sin(alpha) cos(alpha) d; 0 0 0 1]; end 将该函数添加到代码文件中即可运行代码。
相关问题

syms da dalpha dd dtheta dbeta; da = 0; dalpha = 0; dd = 0; dtheta = 0; dbeta = 0; du = pi/180; L1(1) = Link('theta', 90du+0.02+dtheta, 'a', 0+0.001+da, 'alpha', 0+0.003+dalpha, 'qlim', [180, 365], 'modified'); L1(2) = Link('d', 0+0.001+dd, 'a', 185+0.0079, 'alpha', 0+0.001, 'qlim', [3du, 63du], 'modified'); L1(3) = Link('d', 90+0.005+dd, 'a', 0+0.005+da, 'alpha', pi/2+0.005+dalpha, 'qlim', [60du, 120du], 'modified'); L1(4) = Link('theta', 0+dtheta, 'a', 120+0.12, 'alpha', pi/2, 'qlim', [230, 326], 'modified'); L1(3).theta = L1(3).theta + 0.023 + dtheta; L1(4).theta = L1(4).theta + 0.08 + dtheta; Needle = SerialLink(L1, 'name', 'Needle'); theta1 = 0.1; theta2 = 0.2; theta3 = 0.3; theta4 = 0.4; T01_error = DH(L1(1).theta+dtheta, L1(1).d+dd, L1(1).a+da, L1(1).alpha+dalpha); T12_error = dh(L1(2).theta+dtheta, L1(2).d+dd, L1(2).a+da, L1(2).alpha+dalpha); T23_error = dh(L1(3).theta+dtheta, L1(3).d+dd, L1(3).a+da, L1(3).alpha+dalpha); T34_error = dh(L1(4).theta+dtheta, L1(4).d+dd, L1(4).a+da, L1(4).alpha+dalpha); T_error = simplify(T01_errorT12_errorT23_errorT34_error); T = Needle.fkine([theta1, theta2, theta3, theta4]); T_error = subs(T_error, [theta1, theta2, theta3, theta4], [L1(1).theta, L1(2).theta, L1(3).theta, L1(4).theta]); T_total = T*T_error; dx = T_total(1, 4); dy = T_total(2, 4); dz = T_total(3, 4); rx = atan2(T_total(3, 2), T_total(3, 3)); ry = atan2(-T_total(3, 1), sqrt(T_total(3, 2)^2 + T_total(3, 3)^2)); rz = atan2(T_total(2, 1), T_total(1, 1)); disp(['dx = ', num2str(dx)]); disp(['dy = ', num2str(dy)]); disp(['dz = ', num2str(dz)]); disp(['rx = ', num2str(rx)]); disp(['ry = ', num2str(ry)]); disp(['rz = ', num2str(rz)]);代码运行不出来说dh没有定义

这段代码中确实没有定义dh函数,可能是代码作者在其他地方定义了dh函数,或者是拼写错误。 如果你想让代码运行起来,可以尝试将dh函数替换成DH函数,因为DH函数在代码中已经定义了。你只需要将dh改为DH即可,例如: T12_error = DH(L1(2).theta+dtheta, L1(2).d+dd, L1(2).a+da, L1(2).alpha+dalpha); 另外,你还需要将T01_errorT12_errorT23_errorT34_error修改为T01_error*T12_error*T23_error*T34_error,因为这是四个变换矩阵的乘积。

优化程序 syms x y ; eq1 = y == k2.*(x - x0) + y0; eq2 = y == 300/pi.*log(abs(sec(pi*x/300))) + 30; sol = solve([eq1, eq2], [x, y]); % k2_val = k2; % x0_val = x; % y0_val = b; sol.x = subs(sol.x, [k2, x0, y0], [k2, x0, y0]); sol.y = subs(sol.y, [k2, x0, y0], [k2, x0, y0]); disp(sol);

这段程序的目的是求解两个方程组成的方程组。第一个方程是 $y=k_2\cdot(x-x_0)+y_0$,第二个方程是 $y=\frac{300}{\pi}\cdot\log|\sec\frac{\pi x}{300}|+30$。程序中使用了 MATLAB 中的 solve 函数来求解方程组,并将解赋值给 sol 变量。同时,注释掉了一些不必要的代码。
阅读全文

相关推荐

lab=6; lae=6; lbf=6; lfd=3; lfg=3; lge=3; led=3; w=0.1; syms t; theta1=w*t; du=180/pi; hd=pi/180; leb=sqrt(lae^2+lab^2-2*lae*lab*cos(theta1)); fai1=90*hd-theta1/2; fai2=acos(leb/lbf); fai3=fai1-fai2; theta2=pi-fai3; xe=lae*cos(theta1); ye=lae*sin(theta1); xb=lab; yb=0; xf=lab+lbf*cos(theta2); yf=lbf*sin(theta2); xd=(xf+xb)/2; yd=(yf+yb)/2; theta3=acos((xe-xd)/lfg); xg=xe+lge*cos(theta3); yg=ye+lge*sin(theta3); theta2v=diff(theta2); theta2a=diff(theta2v); theta3v=diff(theta3); theta3a=diff(theta3v); m=0:0.01:9.3; theta2=subs(theta2,t,m); theta2v=subs(theta2v,t,m); theta2a=subs(theta2a,t,m); theta3=subs(theta2,t,m); theta3v=subs(theta2v,t,m); theta3a=subs(theta2a,t,m); theta2du=theta2*du; theta3du=theta3*du; figure(1);%figure 是建立图形的意思。系统自动从 1,2,3,4 来建立图形,数字代表第几幅图形 subplot(2,3,1) plot(m,theta2v,'k'); title('角2')%设置图形标题为。 xlabel('时间')%设置 x 轴标签 ylabel('位移') grid on ;%显示坐标轴网格线,grid off 则关闭坐标轴网格线 hold on;%hold on 是当前轴及图像保持而不被刷新,准备接受此后将绘制的图形,多图共存。hold off(默认)则相反 subplot(2,3,4) plot(m,theta3v,'k'); title('角3')%设置图形标题为。 xlabel('时间')%设置 x 轴标签 ylabel('位移') grid on ;%显示坐标轴网格线,grid off 则关闭坐标轴网格线 hold on;%hold on 是当前轴及图像保持而不被刷新,准备接受此后将绘制的图形,多图共存。hold off(默认)则相反

最新推荐

recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

qt 5.3.2 mingw 安装包

qt 5.3.2 mingw 安装包
recommend-type

586befcf3e78455eb3b5359d7500cc97.JPG

586befcf3e78455eb3b5359d7500cc97.JPG
recommend-type

yoloface-50k的可部署模型.zip

yoloface-50k的可部署模型yoloface-50k本仓库包含已量化的yoloface tflite模型以及未量化的onnx模型,h5模型和pb模型,另外还有使用pytorch解析运行yolocfg和weight的小工具本仓库所使用的网络模型来自dog-qiuqiu/MobileNet-Yolo,感谢这位大佬ncnn: yoloface使用ncnn推理后的工程,可以在CPU上实时运行。其中libncnn.a是在Ubuntu 20.04上编译的,如果是不同的操作系统,请下载ncnn自行编译替换tensorflow: 内含yolo转h5、h5转pb的代码tflite: pb转tflite并求解的代码固件单片机部分代码。因为硬件不同所以没有上传整个工程,摘取了核心代码,另附STM32CUBEMX工程文件参考。注意代码中nms是意象的nms,并没有进行非极大值抑制,只是提取了引起置信度的目标,使用时可自己添加
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依