Travel time distribution

时间: 2023-08-19 18:15:34 浏览: 68
回答: 旅行时间分布是指在给定的交通网络中,不同目的地之间的旅行所需的时间的分布。这个分布可以用来描述在不同时间段内,旅行时间的变化情况。旅行时间分布可以受到多种因素的影响,包括交通流量、道路状况、交通信号等。根据引用[1]中的描述,预测区间与置信区间是不同的概念。置信区间用于量化对估计的总体变量(如均值或标准差)的不确定性,而预测区间用于量化对从总体中估计的单个观测值的不确定性。引用[2]和[3]提到了人们对时间的感知和反应,包括追求快速满足和对时间浪费的不满。这些因素也可能影响人们对旅行时间分布的期望和需求。
相关问题

time-travel

time-travel是一个高级调试功能,它可以让开发者在调试过程中回溯到之前的状态。在Vue.js应用程序中,time-travel是通过Vuex状态管理模式实现的。它可以记录应用程序中每个组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化。通过time-travel,开发者可以轻松地查看应用程序的历史版本,并复现每个历史版本当时的结果。这对于调试和排除错误非常有帮助。

``` travel_time day1 ```

这段代码是一个函数调用,调用了一个名为`_time`的函数,并传入了一个参数`day1`。 根据代码片段的信息,我们可以推测`travel_time`函数可能是一个计算旅行时间的函数,而`day1`可能是指定的某一天。 要完全理解这段代码的含义,我们需要查看`travel_time`函数的定义和实现。

相关推荐

降低这段代码的重复率:def calTravelCost(route_list,model): timetable_list=[] distance_of_routes=0 time_of_routes=0 obj=0 for route in route_list: timetable=[] vehicle=model.vehicle_dict[route[0]] travel_distance=0 travel_time=0 v_type = route[0] free_speed=vehicle.free_speed fixed_cost=vehicle.fixed_cost variable_cost=vehicle.variable_cost for i in range(len(route)): if i == 0: next_node_id=route[i+1] travel_time_between_nodes=model.distance_matrix[v_type,next_node_id]/free_speed departure=max(0,model.demand_dict[next_node_id].start_time-travel_time_between_nodes) timetable.append((int(departure),int(departure))) elif 1<= i <= len(route)-2: last_node_id=route[i-1] current_node_id=route[i] current_node = model.demand_dict[current_node_id] travel_time_between_nodes=model.distance_matrix[last_node_id,current_node_id]/free_speed arrival=max(timetable[-1][1]+travel_time_between_nodes,current_node.start_time) departure=arrival+current_node.service_time timetable.append((int(arrival),int(departure))) travel_distance += model.distance_matrix[last_node_id, current_node_id] travel_time += model.distance_matrix[last_node_id, current_node_id]/free_speed+\ + max(current_node.start_time - arrival, 0) else: last_node_id = route[i - 1] travel_time_between_nodes = model.distance_matrix[last_node_id,v_type]/free_speed departure = timetable[-1][1]+travel_time_between_nodes timetable.append((int(departure),int(departure))) travel_distance += model.distance_matrix[last_node_id,v_type] travel_time += model.distance_matrix[last_node_id,v_type]/free_speed distance_of_routes+=travel_distance time_of_routes+=travel_time if model.opt_type==0: obj+=fixed_cost+travel_distance*variable_cost else: obj += fixed_cost + travel_time *variable_cost timetable_list.append(timetable) return timetable_list,time_of_routes,distance_of_routes,obj

优化这段代码:def calTravelCost(route_list,model): timetable_list=[] distance_of_routes=0 time_of_routes=0 obj=0 for route in route_list: timetable=[] vehicle=model.vehicle_dict[route[0]] travel_distance=0 travel_time=0 v_type = route[0] free_speed=vehicle.free_speed fixed_cost=vehicle.fixed_cost variable_cost=vehicle.variable_cost for i in range(len(route)): if i == 0: next_node_id=route[i+1] travel_time_between_nodes=model.distance_matrix[v_type,next_node_id]/free_speed departure=max(0,model.demand_dict[next_node_id].start_time-travel_time_between_nodes) timetable.append((int(departure),int(departure))) elif 1<= i <= len(route)-2: last_node_id=route[i-1] current_node_id=route[i] current_node = model.demand_dict[current_node_id] travel_time_between_nodes=model.distance_matrix[last_node_id,current_node_id]/free_speed arrival=max(timetable[-1][1]+travel_time_between_nodes,current_node.start_time) departure=arrival+current_node.service_time timetable.append((int(arrival),int(departure))) travel_distance += model.distance_matrix[last_node_id, current_node_id] travel_time += model.distance_matrix[last_node_id, current_node_id]/free_speed+\ + max(current_node.start_time - arrival, 0) else: last_node_id = route[i - 1] travel_time_between_nodes = model.distance_matrix[last_node_id,v_type]/free_speed departure = timetable[-1][1]+travel_time_between_nodes timetable.append((int(departure),int(departure))) travel_distance += model.distance_matrix[last_node_id,v_type] travel_time += model.distance_matrix[last_node_id,v_type]/free_speed distance_of_routes+=travel_distance time_of_routes+=travel_time if model.opt_type==0: obj+=fixed_cost+travel_distance*variable_cost else: obj += fixed_cost + travel_time *variable_cost timetable_list.append(timetable) return timetable_list,time_of_routes,distance_of_routes,obj

优化代码“def calTravelCost(route_list, model): timetable_list = [] distance_of_routes = 0 time_of_routes = 0 obj = 0 for route in route_list: timetable = [] vehicle = model.vehicle_dict[route[0]] v_type = route[0] free_speed = vehicle.free_speed fixed_cost = vehicle.fixed_cost variable_cost = vehicle.variable_cost for i, node_id in enumerate(route): if i == 0: next_node_id = route[i + 1] travel_distance, travel_time, departure = _compute_departure_time(model, v_type, next_node_id, free_speed, 0) elif i < len(route) - 1: last_node_id = route[i - 1] current_node = model.demand_dict[node_id] travel_distance, travel_time, arrival, departure = _compute_arrival_and_departure_time(model, last_node_id, current_node, free_speed, timetable[-1][1]) timetable.append((int(arrival), int(departure))) else: last_node_id = route[i - 1] travel_distance, travel_time, departure = _compute_departure_time(model, last_node_id, v_type, free_speed, timetable[-1][1]) timetable.append((int(departure), int(departure))) distance_of_routes += travel_distance time_of_routes += travel_time if model.opt_type == 0: obj += fixed_cost + distance_of_routes * variable_cost else: obj += fixed_cost + time_of_routes * variable_cost timetable_list.append(timetable) return timetable_list, time_of_routes, distance_of_routes, obj def _compute_departure_time(model, from_node_id, to_node_id, free_speed, arrival_time): travel_distance = model.distance_matrix[from_node_id, to_node_id] travel_time = travel_distance / free_speed departure_time = max(arrival_time, model.demand_dict[to_node_id].start_time - travel_time) return travel_distance, travel_time, departure_time def _compute_arrival_and_departure_time(model, from_node_id, to_node, free_speed, arrival_time): travel_distance = model.distance_matrix[from_node_id, to.id] travel_time = travel_distance / free_speed arrival_time = max(arrival_time + travel_time, to.start_time) departure_time = arrival_time + to.service_time return travel_distance, travel_time, arrival_time, departure_time”

最新推荐

recommend-type

Impact of E-commerce on Travel

在21世纪,电子商务(E-commerce)已经成为全球各个行业,特别是旅游和旅游业的重要驱动力。随着互联网的普及和发展,旅游相关的机构与互联网公司纷纷联手,挖掘由电子商务带来的巨大市场潜力。...
recommend-type

57.公司裁员人员优化方案.docx

57.公司裁员人员优化方案.docx
recommend-type

OptiX传输试题与SDH基础知识

"移动公司的传输试题,主要涵盖了OptiX传输设备的相关知识,包括填空题和选择题,涉及SDH同步数字体系、传输速率、STM-1、激光波长、自愈保护方式、设备支路板特性、光功率、通道保护环、网络管理和通信基础设施的重要性、路由类型、业务流向、故障检测以及SDH信号的处理步骤等知识点。" 这篇试题涉及到多个关键的传输技术概念,首先解释几个重要的知识点: 1. SDH(同步数字体系)是一种标准的数字传输体制,它将不同速率的PDH(准同步数字体系)信号复用成一系列标准速率的信号,如155M、622M、2.5G和10G。 2. STM-1(同步传输模块第一级)是SDH的基本传输单元,速率为155Mbps,能容纳多个2M、34M和140M业务。 3. 自愈保护机制是SDH的重要特性,包括通道保护、复用段保护和子网连接保护,用于在网络故障时自动恢复通信,确保服务的连续性。 4. OptiX设备的支路板支持不同阻抗(75Ω和120Ω)和环回功能,环回测试有助于诊断和定位问题。 5. 光功率的度量单位dBm,0dBm表示光功率为1毫瓦。 6. 单向通道保护环在光纤中断时能够快速切换,保持业务不中断。例如,A-C业务在A-B光纤中断时仍能保持。 7. 传输网是通信基础设施的核心,对于信息的传送至关重要。 8. 映射、定位和复用是将PDH信号融入SDH帧结构的关键步骤,其中映射是将低速信号放入高速信号的容器,定位则是确保信号在正确的时间位置发送,复用则是在更高层次的信号中组合多个低速信号。 9. 单向通道保护环带链的拓扑结构中,环上交叉点站需要配置额外的光板来支持不同方向的业务。 10. 时钟的工作模式中,通常锁相模式(GPS同步)具有最高的精度,能提供稳定的系统定时。 这些知识点不仅适用于移动公司的传输网络维护,也是理解现代通信网络基础架构的关键。掌握这些概念和技术,对于网络工程师来说至关重要,能够有效提升网络的稳定性和可靠性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB Genetic Algorithm Function Optimization: Four Efficient Implementation Methods

# Genetic Algorithm Function Optimization in MATLAB: Four Efficient Methods ## 1. Fundamental Theory of Genetic Algorithms Genetic algorithms are optimization algorithms that simulate natural selection and genetics. They excel at solving optimization and search problems by effectively locating hig
recommend-type

java输 入n 用 * 打 出 直 角 三 角 形(n 为长和高)

在Java中,你可以通过嵌套循环来打印出指定长度n的直角三角形。这里是一个简单的示例: ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.print("请输入三角形的边长(n): "); int n = scanner.nextInt(); // 打印上半部分星号
recommend-type

C++Builder函数详解与应用

"C++Builder函数一览" C++Builder是一个集成开发环境(IDE),它提供了丰富的函数库供开发者使用。在C++Builder中,函数是实现特定功能的基本单元,这些函数覆盖了从基本操作到复杂的系统交互等多个方面。下面将详细讨论部分在描述中提及的函数及其作用。 首先,我们关注的是与Action相关的函数,这些函数主要涉及到用户界面(UI)的交互。`CreateAction`函数用于创建一个新的Action对象,Action在C++Builder中常用于管理菜单、工具栏和快捷键等用户界面元素。`EnumRegisteredAction`用于枚举已经注册的Action,这对于管理和遍历应用程序中的所有Action非常有用。`RegisterAction`和`UnRegisterAction`分别用于注册和反注册Action,注册可以使Action在设计时在Action列表编辑器中可见,而反注册则会将其从系统中移除。 接下来是来自`Classes.hpp`文件的函数,这部分函数涉及到对象和集合的处理。`Bounds`函数返回一个矩形结构,根据提供的上、下、左、右边界值。`CollectionsEqual`函数用于比较两个`TCollection`对象是否相等,这在检查集合内容一致性时很有帮助。`FindClass`函数通过输入的字符串查找并返回继承自`TPersistent`的类,`TPersistent`是C++Builder中表示可持久化对象的基类。`FindGlobalComponent`变量则用于获取最高阶的容器类,这在组件层次结构的遍历中常用。`GetClass`函数返回一个已注册的、继承自`TPersistent`的类。`LineStart`函数用于找出文本中下一行的起始位置,这在处理文本文件时很有用。`ObjectBinaryToText`、`ObjectResourceToText`、`ObjectTextToBinary`和`ObjectTextToResource`是一组转换函数,它们分别用于在二进制流、文本文件和资源之间转换对象。`Point`和`Rect`函数则用于创建和操作几何形状,如点和矩形。`ReadComponentRes`、`ReadComponentResEx`和`ReadComponentResFile`用于从资源中读取和解析组件及其属性。`RegisterClass`、`UnregisterClass`以及它们的相关变体`RegisterClassAlias`、`RegisterClasses`、`RegisterComponents`、`RegisterIntegerConsts`、`RegisterNoIcon`和`RegisterNonActiveX`主要用于类和控件的注册与反注册,这直接影响到设计时的可见性和运行时的行为。 这些函数只是C++Builder庞大函数库的一部分,它们展示了C++Builder如何提供强大且灵活的工具来支持开发者构建高效的应用程序。理解并熟练使用这些函数对于提升C++Builder项目开发的效率至关重要。通过合理利用这些函数,开发者可以创建出功能丰富、用户体验良好的桌面应用程序。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB Genetic Algorithm Supply Chain Optimization: Three Key Steps in Practical Application

# 1. Introduction to Genetic Algorithms in MATLAB As a widely-used mathematical computing and visualization software, MATLAB's powerful computational capabilities and rich toolbox functions make it an ideal platform for research and application of genetic algorithms. A genetic algorithm is a search
recommend-type

使用java语言的tftp代码调用

在Java中实现TFTP(简单文件传输协议)客户端通常需要使用到网络编程的知识。以下是一个简单的TFTP客户端代码示例,它使用了Java的`DatagramSocket`和`DatagramPacket`类来实现。 ```java import java.net.*; import java.io.*; public class TFTPClient { private static final int TFTPD_PORT = 69; // TFTP服务端默认端口号 public static void main(String[] args) { if