linux帧缓存v4l2,Linux下V4L2编程小结

时间: 2024-02-12 22:18:23 浏览: 165
好的,我可以回答你的问题。Linux下的V4L2编程可以用于实现视频采集、视频压缩、视频播放等功能。下面是一些小结: 1. V4L2是什么? V4L2是Video for Linux 2的缩写,是一个视频设备驱动程序接口。它提供了一种标准的接口,使得应用程序可以访问视频设备并进行视频采集、处理和显示。 2. V4L2的使用方法 V4L2的使用方法可以分为以下步骤: (1)打开设备文件 (2)配置视频格式和采集参数 (3)启动视频采集 (4)读取采集到的数据 (5)停止视频采集并释放资源 3. Linux帧缓存 Linux帧缓存是一种内核提供的图形显示子系统,它提供了一种标准的接口,使得应用程序可以直接访问显存,并进行图形显示。 4. Linux帧缓存V4L2编程 Linux帧缓存V4L2编程可以用于实现视频播放、视频编码、视频解码等功能。它的使用方法与普通V4L2编程类似,但需要注意一些特殊的接口和参数。 以上是对您提出的问题的回答,希望对您有所帮助。如果您有其他问题,可以随时向我提出。
相关问题

提供一个QT在linux系统使用V4l2读取摄像头图像流数据的例程

以下是一个使用QT在Linux系统中使用V4L2读取摄像头图像流数据的例程: ```c++ #include <QCoreApplication> #include <QDebug> #include <QImage> #include <QTimer> #include <fcntl.h> #include <sys/ioctl.h> #include <linux/videodev2.h> #include <errno.h> #include <unistd.h> #define CAMERA_DEVICE "/dev/video0" // 摄像头设备路径 #define IMAGE_WIDTH 640 // 图像宽度 #define IMAGE_HEIGHT 480 // 图像高度 #define BUFFER_COUNT 4 // 缓存帧数 int main(int argc, char *argv[]) { QCoreApplication a(argc, argv); int camera_fd = open(CAMERA_DEVICE, O_RDWR); // 打开摄像头设备 if (camera_fd == -1) { qCritical() << "Open camera device failed:" << strerror(errno); return -1; } // 设置摄像头参数 struct v4l2_capability cap; struct v4l2_format fmt; struct v4l2_requestbuffers reqbuf; struct v4l2_buffer buf; ioctl(camera_fd, VIDIOC_QUERYCAP, &cap); if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) { qCritical() << "Device is not a video capture device"; return -1; } fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; fmt.fmt.pix.width = IMAGE_WIDTH; fmt.fmt.pix.height = IMAGE_HEIGHT; fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV; fmt.fmt.pix.field = V4L2_FIELD_ANY; ioctl(camera_fd, VIDIOC_S_FMT, &fmt); reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; reqbuf.memory = V4L2_MEMORY_MMAP; reqbuf.count = BUFFER_COUNT; ioctl(camera_fd, VIDIOC_REQBUFS, &reqbuf); struct buffer { void *start; size_t length; } buffers[BUFFER_COUNT]; for (int i = 0; i < BUFFER_COUNT; ++i) { buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = i; ioctl(camera_fd, VIDIOC_QUERYBUF, &buf); buffers[i].length = buf.length; buffers[i].start = mmap(NULL, buf.length, PROT_READ | PROT_WRITE, MAP_SHARED, camera_fd, buf.m.offset); ioctl(camera_fd, VIDIOC_QBUF, &buf); } enum v4l2_buf_type type = V4L2_BUF_TYPE_VIDEO_CAPTURE; ioctl(camera_fd, VIDIOC_STREAMON, &type); // 定时器读取图像 QTimer timer; QObject::connect(&timer, &QTimer::timeout, [&](){ buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; ioctl(camera_fd, VIDIOC_DQBUF, &buf); QImage image((uchar*)buffers[buf.index].start, IMAGE_WIDTH, IMAGE_HEIGHT, QImage::Format_RGB888); image = image.rgbSwapped(); // 颜色转换 image.save("image.jpg"); // 保存图像 ioctl(camera_fd, VIDIOC_QBUF, &buf); }); timer.start(1000 / 25); // 25帧每秒 return a.exec(); } ``` 注意:上述代码仅供参考,具体实现可能需要根据不同的硬件和系统做出一些调整。

v4l2 VIDIOC_QUERYBUF

v4l2中的VIDIOC_QUERYBUF用于查询缓存信息。下面是一个示例代码,展示了如何使用VIDIOC_QUERYBUF来查询缓存信息: ```c struct v4l2_buffer buf; for (int i = 0; i < 5; i++) { memset(&buf, 0, sizeof(buf)); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = i; if (-1 == ioctl(fd, VIDIOC_QUERYBUF, &buf)) { printf("querybuf fail\n"); } } ``` 这段代码中,我们使用了一个循环来查询5个缓存的信息。首先,我们创建了一个v4l2_buffer结构体对象buf,并将其初始化为0。然后,我们设置buf的type为V4L2_BUF_TYPE_VIDEO_CAPTURE,memory为V4L2_MEMORY_MMAP,index为当前循环的索引值。最后,我们使用ioctl函数调用VIDIOC_QUERYBUF命令来查询缓存信息,并将结果存储在buf中。
阅读全文

相关推荐

int init_camera_attribute(int fd) { int numBufs; v4l2_std_id id; struct v4l2_format fmt; struct v4l2_requestbuffers req; struct v4l2_buffer buf; //检查当前视频设备支持的标准 ioctl(fd,VIDIOC_QUERYSTD,&id); //设置视频捕获格式 memset(&fmt,0,sizeof(fmt)); fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; fmt.fmt.pix.width = 640; fmt.fmt.pix.height = 480; fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV; // fmt.fmt.pix.field = V4L2_FIELD_INTERLACED; if(ioctl(fd,VIDIOC_S_FMT,&fmt) == -1){ perror("set VIDIOC_S_FMT is fail"); exit(EXIT_FAILURE); } //分配内存 memset(&req,0,sizeof(req)); req.count = 4; req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; req.memory = V4L2_MEMORY_MMAP; if(ioctl(fd,VIDIOC_REQBUFS,&req) == -1){ perror("set VIDIOC_REQBUFS is fail"); exit(EXIT_FAILURE); } //获取并记录缓存的物理空间 buffers = calloc(req.count,sizeof(*buffers)); for(numBufs = 0; numBufs < req.count; numBufs ++){ memset(&buf,0,sizeof(buf)); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = numBufs; //读取缓存 if(ioctl(fd,VIDIOC_QUERYBUF,&buf) == -1){ perror("set VIDIOC_REQBUFS is fail"); exit(EXIT_FAILURE); } // 转换成相对地址 buffers[numBufs].length = buf.length; buffers[numBufs].start = mmap(NULL,buf.length,PROT_READ|PROT_WRITE, MAP_SHARED,fd,buf.m.offset); if(buffers[numBufs].start == MAP_FAILED){ perror("mmap is fail"); exit(EXIT_FAILURE); } // 放入缓存队列 if(ioctl(fd,VIDIOC_QBUF,&buf) == -1){ perror("set VIDIOC_QBUF is fail"); exit(EXIT_FAILURE); } } return 0; }

最新推荐

recommend-type

实验(七)Linux文件系统编程技术 .doc

实验(七)主要探讨了Linux文件系统编程技术,特别是如何利用`/proc`文件系统来获取系统信息。在Linux系统中,`/proc`是一个特殊的虚拟文件系统,它并不存储在磁盘上,而是直接反映了内核的状态。通过读取`/proc`...
recommend-type

Linux操作系统基础教程.pdf

Linux操作系统基础教程主要涵盖Linux操作系统的基本概念、安装方式、常用命令、系统目录结构、文件链接、磁盘挂载、用户组...随着对Linux的深入理解,可以进一步探索更高级的主题,如系统管理、网络服务、编程接口等。
recommend-type

linux命令手册.pdf

Linux命令手册是Linux系统用户和管理员的重要参考资料,它详尽地阐述了如何在命令行界面中执行各种操作。对于新手来说,这份手册是快速学习和理解Linux操作的基础。以下是手册中涉及的一些关键知识点: 1. **...
recommend-type

Linux下配置JDK、Tomcat以及安装geowebcache.docx

在Linux环境下部署Java开发工具包(JDK)、Apache Tomcat服务器以及Geowebcache是地理信息系统(GIS)应用中常见的步骤。以下将详细介绍这些组件的安装和配置过程。 1. **JDK安装部署** - **拷贝安装包**:首先,...
recommend-type

jsp下页面跳转的几种方法小结

【jsp下页面跳转的几种方法】 在Java服务器页面(JSP)开发中,页面跳转是常见的操作,用于在用户交互或业务处理后引导用户访问新的页面。主要有三种方式来实现这一目标:RequestDispatcher.forward()、...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。