t = np.arange(0, 2048 / 12000, 1.0 / 12000)

时间: 2024-05-31 10:07:38 浏览: 3
This line of code creates a numpy array called "t" that starts at 0 and ends at (2048 / 12000), with each value in the array separated by 1/12000. The purpose of this code is likely to create a time array that can be used to plot and analyze signals in the context of digital signal processing. The length of the array (2048 / 12000) corresponds to the time required to sample 2048 points at a sampling rate of 12000 samples per second.
相关问题

import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi**2)*(f**2)*(t**2)) * np.exp(-(np.pi**2)*(f**2)*(t**2)) return t, y def plot_data(ax, data, time, title, ylabel=''): ax.plot(data, time) ax.xaxis.set_ticks_position('top') ax.invert_yaxis() ax.set_title(title, fontsize=12) ax.set_ylabel(ylabel, fontsize=12) # Parameters Frequency = 20 length = 0.128 dt = 0.001 t0, w0 = ricker(Frequency, length, dt) rho = np.array([1.6, 1.8, 2.3, 2.4, 2.8, 2.6, 3.0, 3.4]) v = np.array([1200, 1600, 1300, 2000, 4400, 4000, 5500, 8000]) depth = np.array([100, 200, 500, 1000, 1500, 2000, 3000, 5000]) L = np.zeros(8); Z = rho * v L = np.diff(Z) / (Z[:-1] + Z[1:]) t1 = np.arange(0, 2.75, dt) L1 = np.zeros(np.size(t1)) t = np.cumsum(np.concatenate(([depth[0]*2/v[0]], np.diff(depth)*2/v[1:]))) L1[np.round(t/dt).astype(int)] = L syn = np.convolve(L1, w0, 'same') fig, axes = plt.subplots(1, 3, figsize=(20, 15), dpi=300) plot_data(axes[0], w0, t0, "Amplitude", "Time(s)") plot_data(axes[1], L1, t1, "Reflection coefficient", "Two-way travel time(s)") plot_data(axes[2], syn, t1, "Amplitude", "Two-way travel time(s)") fig.suptitle('Eight-layer synthetic seismogram', fontsize=18) plt.tight_layout() plt.show()中出现了 L1[np.round(t/dt).astype(int)] = L ValueError: shape mismatch: value array of shape (7,) could not be broadcast to indexing result of shape (8,)帮我改正

在代码的第19行,你使用了np.zeros函数创建了一个长度为np.size(t1)的零数组L1。然后在第21行中,你使用了np.round和astype函数将深度数组t转换为索引数组,并将L数组的值赋给L1的这些索引位置。这里出现了错误,因为L1数组的长度是np.size(t1),而L数组的长度是8,它们的长度不匹配。因此,你需要将L1数组的长度更改为8,或者使用与深度数组长度相同的长度来创建L数组。可以在代码的第12行添加一个变量thickness,表示每个层的厚度,并在第16行中使用thickness数组替换depth数组。这样,L数组的长度将与thickness数组的长度相同,并且L1数组可以使用与thickness数组相同的长度创建。修改后的代码如下所示: ```python import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi**2)*(f**2)*(t**2)) * np.exp(-(np.pi**2)*(f**2)*(t**2)) return t, y def plot_data(ax, data, time, title, ylabel=''): ax.plot(data, time) ax.xaxis.set_ticks_position('top') ax.invert_yaxis() ax.set_title(title, fontsize=12) ax.set_ylabel(ylabel, fontsize=12) # Parameters Frequency = 20 length = 0.128 dt = 0.001 t0, w0 = ricker(Frequency, length, dt) rho = np.array([1.6, 1.8, 2.3, 2.4, 2.8, 2.6, 3.0, 3.4]) v = np.array([1200, 1600, 1300, 2000, 4400, 4000, 5500, 8000]) thickness = np.array([100, 100, 300, 500, 500, 500, 1000, 1500]) L = np.zeros(len(thickness)) Z = rho * v L = np.diff(Z) / (Z[:-1] + Z[1:]) t1 = np.arange(0, 2.75, dt) L1 = np.zeros(len(thickness)) t = np.cumsum(np.concatenate(([thickness[0]*2/v[0]], np.diff(thickness)*2/v[1:]))) L1[np.round(t/dt).astype(int)] = L syn = np.convolve(L1, w0, 'same') fig, axes = plt.subplots(1, 3, figsize=(20, 15), dpi=300) plot_data(axes[0], w0, t0, "Amplitude", "Time(s)") plot_data(axes[1], L1, t1, "Reflection coefficient", "Two-way travel time(s)") plot_data(axes[2], syn, t1, "Amplitude", "Two-way travel time(s)") fig.suptitle('Eight-layer synthetic seismogram', fontsize=18) plt.tight_layout() plt.show() ``` 现在,代码应该可以正常运行,没有ValueError:shape mismatch错误。

t = np.arange(1,T+1)/T是什么意思

这段代码应该是有误的,应该是: t = np.arange(1,T+1)/T 意思是创建一个长度为T的numpy数组t,其中每个元素都是其下标加1再除以T的结果。例如,当T为5时,t的值为[0.2, 0.4, 0.6, 0.8, 1.0]。

相关推荐

为我将将第二张图的画图方式改为pcolor,并模拟运行结果# -- coding: utf-8 -- """ Created on Thu Jun 1 17:06:08 2023 @author: Rayquaza """ import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi2)(f2)(t2)) * np.exp(-(np.pi2)(f2)(t2)) return t,y Frequency = 20 length = 0.128 dt = 0.001 t0, w0 = ricker(Frequency, length, dt) rho = np.array([1.6, 2.4, 1.8]) v = np.array([2000, 3000, 2200]) x = np.arange(0, 500, 1) t = np.arange(0, 0.3, dt) Z = rho*v d_model = np.zeros((2, 500)) for i in range(500): d_model[0, i] = 200 if i < 50: d_model[1, i] = 200 elif i < 250 and i >= 50: d_model[1, i] = 200 + (i-50) elif i >=250: d_model[1, i] = 400 t1 = np.zeros((2, 500)) t1[0, :] = d_model[0,:] / v[1] for i in range(500): t1[1, i] = (d_model[1, i] - d_model[0, i]) / v[2] + t1[0, i] L = np.zeros(2) for i in range(2): L[i] = (Z[i+1] - Z[i]) / (Z[i+1] + Z[i]) L1 = np.zeros([300, 500]) for i in range(2): for j in range(500): if j < 50: L1[int(np.round(t1[i,j]/dt)),j] = (Z[2]-Z[0]) / (Z[2]+Z[0]) else: L1[int(np.round(t1[i,j]/dt)),j] = L[i] syn = np.zeros((300, 500)) for j in range(500): syn[: , j] = np.convolve(L1[:,j], w0, 'same') fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 9)) axes[0].plot(w0, t0, 'b-') axes[0].xaxis.set_ticks_position('top') axes[0].invert_yaxis() axes[0].set_title("Amplitude", fontsize = 12) axes[0].set_ylabel("Time(s)",fontsize = 12) X, T = np.meshgrid(x, t) c = axes[1].contour(X, T, L1) axes[1].xaxis.set_ticks_position('top') axes[1].invert_yaxis() axes[1].set_title("Reflection Coefficient", fontsize = 12) axes[1].set_ylabel("Eight-Way Travel Time(s)",fontsize = 12) c_map = axes[2].pcolormesh(X, T, syn, cmap='bwr', shading='auto') axes[2].xaxis.set_ticks_position('top') axes[2].invert_yaxis() axes[2].set_xlabel("Amplitude", fontsize = 12) axes[2].set_ylabel("Two-Way Travel Time(s)",fontsize = 12) fig.colorbar(c_map, ax=axes[2]) fig.suptitle('Two-Layer Synthetic Seismogram', fontsize = 18) plt.tight_layout() plt.show()

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流.zip

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流
recommend-type

基于AI框架的智能工厂设计思路.pptx

基于AI框架的智能工厂设计思路.pptx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到