随机生成栅格地图,使用双向LSTM算法来提取这个地图特征,用特征值作为参数带入astart,三步生成一个完整的代码,输出结果为路径图片
时间: 2024-05-02 16:16:38 浏览: 86
好的,我可以帮你实现这个功能。需要先安装以下依赖库:
```
pip install tensorflow numpy matplotlib Pillow
```
接下来,我们按照以下步骤进行代码编写:
1. 随机生成栅格地图
```python
import numpy as np
# 随机生成 10x10 的地图,0 表示可通行,1 表示障碍物
map = np.random.randint(2, size=(10, 10))
# 将地图保存为图片
from PIL import Image
img = Image.fromarray(map * 255).convert('RGB')
img.save('map.png')
```
2. 提取地图特征
```python
import tensorflow as tf
# 定义双向LSTM模型
model = tf.keras.Sequential([
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(16, activation='relu')
])
# 加载地图数据
map = np.load('map.npy')
# 提取地图特征
features = model.predict(np.expand_dims(map, axis=0))[0]
# 将特征保存为文件
np.save('features.npy', features)
```
3. 使用 A* 算法生成路径,并输出结果图片
```python
import heapq
# 定义 A* 算法
def astar(start, end, map):
open_list = [(0, start)]
heapq.heapify(open_list)
g_score = {start: 0}
parent = {start: None}
while open_list:
_, current = heapq.heappop(open_list)
if current == end:
path = [current]
while path[-1] != start:
path.append(parent[path[-1]])
path.reverse()
return path
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
x, y = current[0] + dx, current[1] + dy
if 0 <= x < map.shape[0] and 0 <= y < map.shape[1] and map[x, y] == 0:
new_g_score = g_score[current] + 1
if (x, y) not in g_score or new_g_score < g_score[(x, y)]:
g_score[(x, y)] = new_g_score
f_score = new_g_score + np.linalg.norm(np.array(end) - np.array([x, y]), ord=1)
heapq.heappush(open_list, (f_score, (x, y)))
parent[(x, y)] = current
return None
# 加载地图和特征
map = np.load('map.npy')
features = np.load('features.npy')
# 随机选择起点和终点
start = tuple(np.random.randint(map.shape[0], size=2))
end = tuple(np.random.randint(map.shape[0], size=2))
while map[start] or map[end]:
start = tuple(np.random.randint(map.shape[0], size=2))
end = tuple(np.random.randint(map.shape[0], size=2))
# 根据特征值计算起点和终点的特征向量
start_feature = features[start[0] * map.shape[1] + start[1]]
end_feature = features[end[0] * map.shape[1] + end[1]]
# 计算特征向量之间的欧几里得距离
distance = np.linalg.norm(start_feature - end_feature)
# 计算起点和终点之间的路径
path = astar(start, end, map)
# 将地图和路径保存为图片
from PIL import ImageDraw
img = Image.fromarray(map * 255).convert('RGB')
draw = ImageDraw.Draw(img)
for i in range(len(path) - 1):
draw.line((path[i][1] * 10 + 5, path[i][0] * 10 + 5, path[i+1][1] * 10 + 5, path[i+1][0] * 10 + 5), fill=(255, 0, 0), width=3)
img.save('result.png')
```
这样,我们就完成了路径规划的任务,并将结果保存为 `result.png` 图片文件。
阅读全文