n = 0:1:99; % 产生长度为100的序列 x1 = rand(1,100); % 产生随机序列 x2 = linspace(0,1,100); % 产生线性序列 % 进行相加、乘及卷积运算 y1 = x1 + x2; % 相加 y2 = x1 .* x2; % 相乘 y3 = conv(x1,x2); % 卷积 % 利用fft函数求离散傅里叶变换 N = 1024; % 采样点数 X1 = fft(x1,N); % 对x1进行FFT变换 X2 = fft(x2,N); % 对x2进行FFT变换 % 绘制信号和变换结果的图像 subplot(2,2,1);plot(n,x1);title('x1'); subplot(2,2,2);plot(n,x2);title('x2'); subplot(2,2,3);plot(n,y1);title('x1+x2'); subplot(2,2,4);plot(n,y2);title('x1x2');能把卷积的图像也体现出来吗

时间: 2023-08-05 13:05:31 浏览: 41
当进行卷积运算时,得到的结果序列长度为 N + M - 1,其中 N 和 M 分别为输入序列的长度。因此,在上述代码中,进行卷积运算的结果序列长度应该为 199,而不是 100。为了能够正确地绘制卷积的图像,需要对代码进行如下修改: ```matlab n_conv = 0:1:198; % 产生长度为199的序列 y3 = conv(x1,x2); % 卷积 % 绘制信号和变换结果的图像 subplot(2,2,1);plot(n,x1);title('x1'); subplot(2,2,2);plot(n,x2);title('x2'); subplot(2,2,3);plot(n,y1);title('x1+x2'); subplot(2,2,4);plot(n_conv,y3);title('x1*x2'); ``` 这样就可以绘制出卷积的图像了。
相关问题

clear all; clc; %% 生成双极性7位M序列 X1 = 0; X2 = 0; X3 = 1; m = 350; % 重复50遍的7位单极性m序列 for i = 1:m Y1 = X1; Y2 = X2; Y3 = X3; X3 = Y2; X2 = Y1; X1 = xor(Y3, Y1); L(i) = Y1; end for i = 1:m M(i) = 1 - 2 * L(i); % 将单极性m序列变为双极性m序列 end %% 画出双极性7位M序列频谱 k = 1:1:m; figure(1); subplot(2, 1, 1); stem(k-1, M); axis([0, 7, -1, 1]); xlabel('k'); ylabel('M序列'); title('双极性7位M序列'); subplot(2, 1, 2); ym = fft(M, 4096); magm = abs(ym); % 求双极性m序列频谱 fm = (1:2048) * 200 / 2048; plot(fm, magm(1:2048) * 2 / 4096); title('双极性7位M序列的频谱'); xlabel('Hz'); %% 生成扩频前待发送二进制信息序列和扩频后序列码 N = 50; a = 0; x_rand = rand(1, N); % 产生50个0与1之间随机数 for i = 1:N if x_rand(i) >= 0.5 % 大于等于0.5的取1,小于0.5的取0 x(i) = 1; a = a + 1; else x(i) = 0; end end t = 0:N-1; figure(2); subplot(2, 1, 1); stem(t, x); title('扩频前待发送二进制信息序列'); tt = 0:349; subplot(2, 1, 2); L = 1:7*N; y = rectpulse(x, 7); s(L) = 0; for i = 1:350 % 扩频后,码率变为100/7*7=100Hz s(i) = xor(L(i), y(i)); end tt = 0:7*N-1; stem(tt, s); axis([0, 350, 0, 1]); title('扩频后的待发送序列码');

% 清空变量并清空命令窗口 clear all; clc; %% 生成双极性7位M序列 X1 = 0; X2 = 0; X3 = 1; % 初始化三个寄存器 m = 350; % 重复50遍的7位单极性m序列 % 生成双极性7位M序列 for i = 1:m Y1 = X1; Y2 = X2; Y3 = X3; % 保存当前寄存器值 X3 = Y2; X2 = Y1; % 移位操作 X1 = xor(Y3, Y1); % 异或操作 L(i) = Y1; % 保存当前寄存器最低位的值 end % 将单极性m序列变为双极性m序列 for i = 1:m M(i) = 1 - 2 * L(i); end %% 画出双极性7位M序列频谱 k = 1:1:m; figure(1); % 新建图像窗口 subplot(2, 1, 1); % 画图1 stem(k-1, M); axis([0, 7, -1, 1]); % 设置坐标轴范围 xlabel('k'); ylabel('M序列'); % 设置坐标轴标签 title('双极性7位M序列'); % 设置图像标题 subplot(2, 1, 2); % 画图2 ym = fft(M, 4096); % 对双极性m序列进行FFT magm = abs(ym); % 求双极性m序列频谱 fm = (1:2048) * 200 / 2048; % 计算频率 plot(fm, magm(1:2048) * 2 / 4096); % 画图 title('双极性7位M序列的频谱'); xlabel('Hz'); %% 生成扩频前待发送二进制信息序列和扩频后序列码 N = 50; % 信息序列长度 a = 0; x_rand = rand(1, N); % 产生50个0与1之间随机数 % 生成待发送二进制信息序列 for i = 1:N if x_rand(i) >= 0.5 % 大于等于0.5的取1,小于0.5的取0 x(i) = 1; a = a + 1; else x(i) = 0; end end t = 0:N-1; % 生成时间序列 figure(2); % 新建图像窗口 subplot(2, 1, 1); % 画图1 stem(t, x); % 画图 title('扩频前待发送二进制信息序列'); tt = 0:349; % 生成时间序列 subplot(2, 1, 2); % 画图2 L = 1:7*N; y = rectpulse(x, 7); % 7倍扩频 s(L) = 0; for i = 1:350 % 扩频后,码率变为100/7*7=100Hz s(i) = xor(L(i), y(i)); % 异或操作 end tt = 0:7*N-1; % 生成时间序列 stem(tt, s); axis([0, 350, 0, 1]); % 设置坐标轴范围 title('扩频后的待发送序列码');

帮我逐句解释一下这段代码%生成m序列 周期为2^N-1 x1=0;x2=0;x3=1; m=350;%伪随机码的周期 for i=1:m y3=x3;y2=x2;y1=x1; x3=y2;x2=y1; x1=xor(y3,y1); %xor逻辑异运算 l(i)=y1; end for i=1:m M(i)=1-2*l(i); %将单极性m序列变为双极性m序列 end k=1:1:m; ym=fft(M,4096); %傅里叶变换 magm=abs(ym); fm=(1:2048)*200/2048; [c,d]=xcorr(M,'unbiased'); %xcorr计算互相关 %随机生成50位二进制比特序列,进行扩频编码 n=50;a=0; x_rand=rand(1,n); for i=1:n if x_rand(i)>=0.5 x(i)=1;a=a+1; else x(i)=0; end %大于等于0.5取1,小于0.5取0 end t=0:n-1; tt=0:349; L=1:7*n; y(L)=0; y=rectpulse(x,7); %利用矩形脉冲将序列扩展为350 s(L)=0; for i=1:350 %扩频后,码率变为100/7*7=100 s(i)=xor(L(i),y(i)); end tt=0:7*n-1; %对扩频前后信号进行BPSK调制,观察其时域波形 %BPSK调制采用2Khz信号cos(2*2000*t)作为载波 fs=2000; %载频频率 fc=100000 %采样率 T=1/fs; ts=0:0.00001:3.5-0.00001;%为了使信号看起来更光滑,作图时采样频率为100kHz,ps=cos(2*pi*fs*ts) s_b=rectpulse(s,1000); %将冲激信号补成矩形信号 s_bpsk=(1-2.*s_b).*cos(2*pi*fs*ts);%扩频后信号BPSK调制时域波形,(1-2.*s_b)是1,-1序列 s_bb=rectpulse(x,7000); s_bpskb=(1-2.*s_bb).*cos(2*pi*fs*ts);%无扩频信号BPSK调制时域波形

这段代码的作用是生成一个周期为2^N-1的伪随机码,并进行扩频编码和BPSK调制,最终观察其时域波形。 首先,定义了三个变量x1、x2、x3,初始值分别为0、0、1,以及周期m为350。然后通过循环生成伪随机码,其中使用了xor逻辑异运算,将生成的单极性m序列变为双极性m序列。 接着,通过FFT傅里叶变换和xcorr函数计算互相关,得到了伪随机码的频域特性和自相关函数。 然后,使用rand函数随机生成50位二进制比特序列,并进行扩频编码,将序列扩展为350个,再将扩频后的信号进行BPSK调制,最终得到了扩频后信号和无扩频信号的时域波形。其中,采用cos(2*2000*t)作为载波,fs=2000为载波频率,fc=100000为采样率,ts设置了一个时间范围,使用rectpulse函数将信号补成矩形信号,并使用(1-2.*s_b)对信号进行BPSK调制,得到扩频后信号的时域波形。对于无扩频信号,直接使用rectpulse和BPSK调制函数得到其时域波形。

相关推荐

clear all; clc; X1=0;X2=0;X3=1; m=350; %重复50遍的7位单极性m序列 for i=1:m Y1=X1; Y2=X2; Y3=X3; X3=Y2; X2=Y1; X1=xor(Y3,Y1); L(i)=Y1; end for i=1:m M(i)=1-2*L(i); %将单极性m序列变为双极性m序列 end k=1:1:m; figure(1) subplot(2,1,1) %做m序列图 stem(k-1,M); axis([0,7,-1,1]); xlabel('k'); ylabel('M序列'); title('双极性7位M序列') ; subplot(2,1,2) ym=fft(M,4096); magm=abs(ym); %求双极性m序列频谱 fm=(1:2048)*200/2048; plot(fm,magm(1:2048)*2/4096); title('双极性7位M序列的频谱') %% 二进制信息序列 N=50;a=0; x_rand=rand(1,N); %产生50个0与1之间随机数 for i=1:N if x_rand(i)>=0.5 %大于等于0.5的取1,小于0.5的取0 x(i)=1;a=a+1; else x(i)=0; end end t=0:N-1; figure(2) %做信息码图 subplot(2,1,1) stem(t,x); title('扩频前待发送二进制信息序列'); tt=0:349; subplot(2,1,2) L=1:7*N; y=rectpulse(x,7) s(L)=0; for i=1:350 %扩频后,码率变为100/7*7=100Hz s(i)=xor(L(i),y(i)); end tt=0:7*N-1; stem(tt,s); axis([0,350,0,1]); title('扩频后的待发送序列码'); %% BPSK调制波形 figure(3) subplot(2,1,2) fs=2000; ts=0:0.00001:3.5-0.00001;%为了使信号看起来更光滑,作图时采样频率为100kHz % ps=cos(2*pi*fs*ts); s_b=rectpulse(s,1000); %将冲激信号补成矩形信号 s_bpsk=(1-2.*s_b).*cos(2*pi*fs*ts);%扩频后信号BPSK调制时域波形,(1-2.*s_b)是1,-1序列 plot(ts,s_bpsk); xlabel('s'); axis([0.055,0.085,-1.2,1.2]) title('扩频后bpsk信号时域波形'); subplot(2,1,1) s_bb=rectpulse(x,7000); s_bpskb=(1-2.*s_bb).*cos(2*pi*fs*ts);%无扩频信号BPSK调制时域波形 plot(ts,s_bpskb); xlabel('s'); axis([0.055,0.085,-1.2,1.2]); title('扩频前bpsk信号时域波形') %% BPSK调制频谱 figure(4) N=400000; ybb=fft(s_bpskb,N); %无扩频信号BPSK调制频谱 magb=abs(ybb); fbb=(1:N/2)*100000/N; subplot(2,1,1) plot(fbb,magb(1:N/2)*2/N); axis([1700,2300,0,0.8]); title('扩频前调制信号频谱图'); xlabel('Hz'); subplot(2,1,2) yb=fft(s_bpsk,N); %扩频信号BPSK调制频谱 mag=abs(yb); fb=(1:N/2)*100000/N; plot(fb,mag(1:N/2)*2/N); axis([1700,2300,0,0.8]); title('扩频后调制信号频谱图'); xlabel('Hz');

最新推荐

recommend-type

并行计算课程设计(报告+代码+可执行文件)

对每个随机点检测其是否在B内,假设位于B内的随机点个数为N(in)(<=N),应用蒙特卡洛算法,则B的体积为 V=V1(N(in)/N) 其中V1是B1的体积。如果产生足够多的随机点,理论上可以获得任意逼近精度。 算法描述...
recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

超级简单的地图操作工具开发可疑应急,地图画点,画线,画区域,获取地图经纬度等

解压密码:10086007 参考:https://blog.csdn.net/qq_38567039/article/details/138872298?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22138872298%22%2C%22source%22%3A%22qq_38567039%22%7D 获取地图经纬度等 超级简单的地图操作工具开发可疑应急,echars的地图画点,画线,画区域 <script type="text/javascript" src="echarts.min.js"></script> <!-- Uncomment this line if you want to use map--> <script type="text/javascript" src="china.js"></script> <script type="text/javascript" src="world.js"></script>
recommend-type

java进销存管理系统(jsp+mssql).zip

java进销存管理系统(jsp+mssql)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依